BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22937823)

  • 1. Botrytis cinerea mutants deficient in D-galacturonic acid catabolism have a perturbed virulence on Nicotiana benthamiana and Arabidopsis, but not on tomato.
    Zhang L; van Kan JA
    Mol Plant Pathol; 2013 Jan; 14(1):19-29. PubMed ID: 22937823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The D-galacturonic acid catabolic pathway in Botrytis cinerea.
    Zhang L; Thiewes H; van Kan JA
    Fungal Genet Biol; 2011 Oct; 48(10):990-7. PubMed ID: 21683149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative d-galacturonate transporters.
    Zhang L; Hua C; Stassen JHM; Chatterjee S; Cornelissen M; van Kan JAL
    Fungal Genet Biol; 2014 Nov; 72():182-191. PubMed ID: 24140151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea.
    Nafisi M; Stranne M; Zhang L; van Kan JA; Sakuragi Y
    Mol Plant Microbe Interact; 2014 Aug; 27(8):781-92. PubMed ID: 24725206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The D-galacturonic acid catabolic pathway genes differentially regulate virulence and salinity response in Sclerotinia sclerotiorum.
    Wei W; Pierre-Pierre N; Peng H; Ellur V; Vandemark GJ; Chen W
    Fungal Genet Biol; 2020 Dec; 145():103482. PubMed ID: 33137429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors.
    Soulie MC; Koka SM; Floch K; Vancostenoble B; Barbe D; Daviere A; Soubigou-Taconnat L; Brunaud V; Poussereau N; Loisel E; Devallee A; Expert D; Fagard M
    Mol Plant Pathol; 2020 Nov; 21(11):1436-1450. PubMed ID: 32939948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of plant protection against two oxalate-producing fungal pathogens by oxalotrophic strains of Stenotrophomonas spp.
    Marina M; Romero FM; Villarreal NM; Medina AJ; Gárriz A; Rossi FR; Martinez GA; Pieckenstain FL
    Plant Mol Biol; 2019 Aug; 100(6):659-674. PubMed ID: 31187392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits.
    Rui O; Hahn M
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel Zn2 Cys6 transcription factor BcGaaR regulates D-galacturonic acid utilization in Botrytis cinerea.
    Zhang L; Lubbers RJ; Simon A; Stassen JH; Vargas Ribera PR; Viaud M; van Kan JA
    Mol Microbiol; 2016 Apr; 100(2):247-62. PubMed ID: 26691528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways.
    López-Cruz J; Óscar CS; Emma FC; Pilar GA; Carmen GB
    Mol Plant Pathol; 2017 Jan; 18(1):16-31. PubMed ID: 26780422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial.
    Dalmais B; Schumacher J; Moraga J; LE Pêcheur P; Tudzynski B; Collado IG; Viaud M
    Mol Plant Pathol; 2011 Aug; 12(6):564-79. PubMed ID: 21722295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence.
    González M; Brito N; Frías M; González C
    PLoS One; 2013; 8(6):e65924. PubMed ID: 23762450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. bcpmr1 encodes a P-type Ca(2+)/Mn(2+)-ATPase mediating cell-wall integrity and virulence in the phytopathogen Botrytis cinerea.
    Plaza V; Lagües Y; Carvajal M; Pérez-García LA; Mora-Montes HM; Canessa P; Larrondo LF; Castillo L
    Fungal Genet Biol; 2015 Mar; 76():36-46. PubMed ID: 25677379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea.
    Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T
    Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence.
    Zhang Z; Qin G; Li B; Tian S
    Mol Plant Microbe Interact; 2014 Jun; 27(6):590-600. PubMed ID: 24520899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea.
    Yang Q; Yu F; Yin Y; Ma Z
    PLoS One; 2013; 8(4):e61307. PubMed ID: 23585890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction.
    Seifi H; De Vleesschauwer D; Aziz A; Höfte M
    Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host.
    Frías M; González C; Brito N
    New Phytol; 2011 Oct; 192(2):483-95. PubMed ID: 21707620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea.
    ten Have A; Mulder W; Visser J; van Kan JA
    Mol Plant Microbe Interact; 1998 Oct; 11(10):1009-16. PubMed ID: 9768518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence.
    Zhang C; He Y; Zhu P; Chen L; Wang Y; Ni B; Xu L
    Mol Plant Microbe Interact; 2015 Oct; 28(10):1091-101. PubMed ID: 26035129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.