These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 22937865)

  • 1. Single amino acid residue in the M4 domain of GluN1 subunit regulates the surface delivery of NMDA receptors.
    Kaniakova M; Lichnerova K; Vyklicky L; Horak M
    J Neurochem; 2012 Nov; 123(3):385-95. PubMed ID: 22937865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits.
    Delaney AJ; Sedlak PL; Autuori E; Power JM; Sah P
    J Neurophysiol; 2013 Mar; 109(5):1391-402. PubMed ID: 23221411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neto1 associates with the NMDA receptor/amyloid precursor protein complex.
    Cousins SL; Innocent N; Stephenson FA
    J Neurochem; 2013 Sep; 126(5):554-64. PubMed ID: 23621516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of Triheteromeric
    Yi F; Zachariassen LG; Dorsett KN; Hansen KB
    Mol Pharmacol; 2018 May; 93(5):453-467. PubMed ID: 29483146
    [No Abstract]   [Full Text] [Related]  

  • 5. Disruption of S2-M4 linker coupling reveals novel subunit-specific contributions to N-methyl-d-aspartate receptor function and ethanol sensitivity.
    Hughes BA; Woodward JJ
    Neuropharmacology; 2016 Jun; 105():96-105. PubMed ID: 26577016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAP97 blocks the RXR ER retention signal of NMDA receptor subunit GluN1-3 through its SH3 domain.
    Hong X; Avetisyan M; Ronilo M; Standley S
    Biochim Biophys Acta; 2015 Feb; 1853(2):489-99. PubMed ID: 25499266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific pathogenic mutations in the M3 domain of the GluN1 subunit regulate the surface delivery and pharmacological sensitivity of NMDA receptors.
    Kolcheva M; Kortus S; Krausova BH; Barackova P; Misiachna A; Danacikova S; Kaniakova M; Hemelikova K; Hotovec M; Rehakova K; Horak M
    Neuropharmacology; 2021 May; 189():108528. PubMed ID: 33773999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glutamate receptor GluN2 subunit regulates synaptic trafficking of AMPA receptors in the neonatal mouse brain.
    Hamada S; Ogawa I; Yamasaki M; Kiyama Y; Kassai H; Watabe AM; Nakao K; Aiba A; Watanabe M; Manabe T
    Eur J Neurosci; 2014 Oct; 40(8):3136-46. PubMed ID: 25131300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chimeric Glutamate Receptor Subunits Reveal the Transmembrane Domain Is Sufficient for NMDA Receptor Pore Properties but Some Positive Allosteric Modulators Require Additional Domains.
    Wilding TJ; Lopez MN; Huettner JE
    J Neurosci; 2016 Aug; 36(34):8815-25. PubMed ID: 27559165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Cell-Surface Expression of Triheteromeric NMDA Receptors.
    Yi F; Traynelis SF; Hansen KB
    Methods Mol Biol; 2017; 1677():145-162. PubMed ID: 28986871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate binding to the GluN2B subunit controls surface trafficking of N-methyl-D-aspartate (NMDA) receptors.
    She K; Ferreira JS; Carvalho AL; Craig AM
    J Biol Chem; 2012 Aug; 287(33):27432-45. PubMed ID: 22740692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrangement of subunits in functional NMDA receptors.
    Salussolia CL; Prodromou ML; Borker P; Wollmuth LP
    J Neurosci; 2011 Aug; 31(31):11295-304. PubMed ID: 21813689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric Interactions between NMDA Receptor Subunits Shape the Developmental Shift in Channel Properties.
    Sun W; Hansen KB; Jahr CE
    Neuron; 2017 Apr; 94(1):58-64.e3. PubMed ID: 28384476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key amino acid residues within the third membrane domains of NR1 and NR2 subunits contribute to the regulation of the surface delivery of N-methyl-D-aspartate receptors.
    Kaniakova M; Krausova B; Vyklicky V; Korinek M; Lichnerova K; Vyklicky L; Horak M
    J Biol Chem; 2012 Jul; 287(31):26423-34. PubMed ID: 22711533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis.
    Mikasova L; De Rossi P; Bouchet D; Georges F; Rogemond V; Didelot A; Meissirel C; Honnorat J; Groc L
    Brain; 2012 May; 135(Pt 5):1606-21. PubMed ID: 22544902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors.
    Hansen KB; Ogden KK; Yuan H; Traynelis SF
    Neuron; 2014 Mar; 81(5):1084-1096. PubMed ID: 24607230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Cell-Surface Expression of Triheteromeric NMDA Receptors.
    Yi F; Traynelis SF; Hansen KB
    Methods Mol Biol; 2024; 2799():55-77. PubMed ID: 38727903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors.
    Kvist T; Greenwood JR; Hansen KB; Traynelis SF; Bräuner-Osborne H
    Neuropharmacology; 2013 Dec; 75():324-36. PubMed ID: 23973313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits.
    Lind GE; Mou TC; Tamborini L; Pomper MG; De Micheli C; Conti P; Pinto A; Hansen KB
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6942-E6951. PubMed ID: 28760974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the intracellular GluN2 C-terminal domain on NMDA receptor function.
    Punnakkal P; Jendritza P; Köhr G
    Neuropharmacology; 2012 Apr; 62(5-6):1985-92. PubMed ID: 22245680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.