BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 22938175)

  • 1. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii.
    Vaughn R; Garnhart N; Garey JR; Thomas WK; Livingston BT
    Evodevo; 2012 Sep; 3(1):19. PubMed ID: 22938175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of the skeletal proteome of the brittle star Ophiocoma wendtii reveals overall conservation of proteins but variation in spicule matrix proteins.
    Seaver RW; Livingston BT
    Proteome Sci; 2015; 13():7. PubMed ID: 25705131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.
    Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P
    Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The skeletal proteome of the sea star Patiria miniata and evolution of biomineralization in echinoderms.
    Flores RL; Livingston BT
    BMC Evol Biol; 2017 Jun; 17(1):125. PubMed ID: 28583083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conserved genetic background for pluteus arm development in brittle stars and sea urchin.
    Morino Y; Koga H; Wada H
    Evol Dev; 2016; 18(2):89-95. PubMed ID: 26773338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms.
    McCauley BS; Wright EP; Exner C; Kitazawa C; Hinman VF
    Evodevo; 2012 Aug; 3(1):17. PubMed ID: 22877149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks.
    Dylus DV; Czarkwiani A; Stångberg J; Ortega-Martinez O; Dupont S; Oliveri P
    Evodevo; 2016; 7():2. PubMed ID: 26759711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New hypotheses of cell type diversity and novelty from orthology-driven comparative single cell and nuclei transcriptomics in echinoderms.
    Meyer A; Ku C; Hatleberg WL; Telmer CA; Hinman V
    Elife; 2023 Jul; 12():. PubMed ID: 37470227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory heterochronies and loose temporal scaling between sea star and sea urchin regulatory circuits.
    Gildor T; Hinman V; Ben-Tabou-De-Leon S
    Int J Dev Biol; 2017; 61(3-4-5):347-356. PubMed ID: 28621432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene regulatory divergence amongst echinoderms underlies appearance of pigment cells in sea urchin development.
    Spurrell M; Oulhen N; Foster S; Perillo M; Wessel G
    Dev Biol; 2023 Feb; 494():13-25. PubMed ID: 36519720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polycomb group gene expression in the sea urchin.
    Gustafson EA; Wessel GM
    Dev Dyn; 2008 Jul; 237(7):1851-61. PubMed ID: 18521949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.
    Fink RD; McClay DR
    Dev Biol; 1985 Jan; 107(1):66-74. PubMed ID: 2578117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.
    Kadri S; Hinman VF; Benos PV
    PLoS One; 2011; 6(12):e29217. PubMed ID: 22216218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraocular Vision in a Brittle Star Is Mediated by Chromatophore Movement in Response to Ambient Light.
    Sumner-Rooney L; Kirwan JD; Lowe E; Ullrich-Lüter E
    Curr Biol; 2020 Jan; 30(2):319-327.e4. PubMed ID: 31902727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomes shed light on transgenerational and developmental effects of ocean warming on embryos of the sea urchin Strongylocentrotus intermedius.
    Shi D; Zhao C; Chen Y; Ding J; Zhang L; Chang Y
    Sci Rep; 2020 May; 10(1):7931. PubMed ID: 32404890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
    Hinman VF; Nguyen A; Davidson EH
    Dev Biol; 2007 Dec; 312(2):584-95. PubMed ID: 17956756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell RNA-sequencing analysis of early sea star development.
    Foster S; Oulhen N; Fresques T; Zaki H; Wessel G
    Development; 2022 Nov; 149(22):. PubMed ID: 36399063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation of the WD-repeat, microtubule-binding protein, EMAP, in sea urchins, humans, and the nematode C. elegans.
    Suprenant KA; Tuxhorn JA; Daggett MA; Ahrens DP; Hostetler A; Palange JM; VanWinkle CE; Livingston BT
    Dev Genes Evol; 2000 Jan; 210(1):2-10. PubMed ID: 10603080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.