These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22938356)

  • 1. Experimental validation of finite element models of intact and implanted composite hemipelvises using digital image correlation.
    Ghosh R; Gupta S; Dickinson A; Browne M
    J Biomech Eng; 2012 Aug; 134(8):081003. PubMed ID: 22938356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of acetabular cup material on pelvis cortex surface strains, measured using digital image correlation.
    Dickinson AS; Taylor AC; Browne M
    J Biomech; 2012 Feb; 45(4):719-23. PubMed ID: 22236529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-field in vitro measurements and in silico predictions of strain shielding in the implanted femur after total hip arthroplasty.
    Chanda S; Dickinson A; Gupta S; Browne M
    Proc Inst Mech Eng H; 2015 Aug; 229(8):549-59. PubMed ID: 26112349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental validation of numerically predicted strain and micromotion in intact and implanted composite hemi-pelvises.
    Ghosh R; Gupta S; Dickinson A; Browne M
    Proc Inst Mech Eng H; 2013 Feb; 227(2):162-74. PubMed ID: 23513987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental validation of a finite element model of the proximal femur using digital image correlation and a composite bone model.
    Dickinson AS; Taylor AC; Ozturk H; Browne M
    J Biomech Eng; 2011 Jan; 133(1):014504. PubMed ID: 21186906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain and micromotion in intact and resurfaced composite femurs: experimental and numerical investigations.
    Pal B; Gupta S; New AM; Browne M
    J Biomech; 2010 Jul; 43(10):1923-30. PubMed ID: 20392448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element and experimental cortex strains of the intact and implanted tibia.
    Completo A; Fonseca F; Simões JA
    J Biomech Eng; 2007 Oct; 129(5):791-7. PubMed ID: 17887906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of intact and implanted distal femur finite element models.
    Completo A; Fonseca F; Simões JA
    J Biomech; 2007; 40(11):2467-76. PubMed ID: 17224158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo.
    Moerman KM; Holt CA; Evans SL; Simms CK
    J Biomech; 2009 May; 42(8):1150-3. PubMed ID: 19362312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element analysis of acetabular fractures--development and validation with a synthetic pelvis.
    Shim V; Böhme J; Vaitl P; Klima S; Josten C; Anderson I
    J Biomech; 2010 May; 43(8):1635-9. PubMed ID: 20381049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights on the proximal femur biomechanics using Digital Image Correlation.
    Katz Y; Yosibash Z
    J Biomech; 2020 Mar; 101():109599. PubMed ID: 32008806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental validation of 3D printed patient-specific implants using digital image correlation and finite element analysis.
    Sutradhar A; Park J; Carrau D; Miller MJ
    Comput Biol Med; 2014 Sep; 52():8-17. PubMed ID: 24992729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone remodelling around cementless composite acetabular components: the effects of implant geometry and implant-bone interfacial conditions.
    Ghosh R; Gupta S
    J Mech Behav Biomed Mater; 2014 Apr; 32():257-269. PubMed ID: 24508712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
    Anderson AE; Peters CL; Tuttle BD; Weiss JA
    J Biomech Eng; 2005 Jun; 127(3):364-73. PubMed ID: 16060343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain.
    Ghosh R; Pal B; Ghosh D; Gupta S
    Comput Methods Biomech Biomed Engin; 2015; 18(7):697-710. PubMed ID: 24156480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Strain Rosettes and Digital Image Correlation for Measuring Vertebral Body Strain.
    Gustafson H; Siegmund G; Cripton P
    J Biomech Eng; 2016 May; 138(5):054501. PubMed ID: 26902321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation.
    Kluess D; Souffrant R; Mittelmeier W; Wree A; Schmitz KP; Bader R
    Comput Methods Programs Biomed; 2009 Jul; 95(1):23-30. PubMed ID: 19231021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.
    Gardiner JC; Weiss JA
    J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of the pelvis after modular hemipelvic endoprosthesis reconstruction.
    Zhou Y; Min L; Liu Y; Shi R; Zhang W; Zhang H; Duan H; Tu C
    Int Orthop; 2013 Apr; 37(4):653-8. PubMed ID: 23318936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.