These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22938592)

  • 1. Selective oxidation of 8,8'-hydroxylated binaphthols to bis-spironaphthalenones or binaphtho-para- and binaphtho-ortho-quinones.
    Podlesny EE; Carroll PJ; Kozlowski MC
    Org Lett; 2012 Sep; 14(18):4862-5. PubMed ID: 22938592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent approach to the bisanthraquinone natural products: total synthesis of (S)-bisoranjidiol and derivatives from binaphtho-para-quinones.
    Podlesny EE; Kozlowski MC
    J Org Chem; 2013 Jan; 78(2):466-76. PubMed ID: 23249414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of electron deficient 5,6-aryloxy spiroketals.
    Lindsey CC; Wu KL; Pettus TR
    Org Lett; 2006 May; 8(11):2365-7. PubMed ID: 16706527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-catalysed asymmetric tandem spiro-cyclization using dioxygen in air as the hydrogen acceptor.
    Oguma T; Katsuki T
    Chem Commun (Camb); 2014 May; 50(39):5053-6. PubMed ID: 24715032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ru(II)-catalyzed vinylative dearomatization of naphthols via a C(sp2)-H bond activation approach.
    Nan J; Zuo Z; Luo L; Bai L; Zheng H; Yuan Y; Liu J; Luan X; Wang Y
    J Am Chem Soc; 2013 Nov; 135(46):17306-9. PubMed ID: 24195654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of spiro compounds through tandem oxidative coupling and a framework rearrangement reaction.
    Sue D; Kawabata T; Sasamori T; Tokitoh N; Tsubaki K
    Org Lett; 2010 Jan; 12(2):256-8. PubMed ID: 20000440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total synthesis of (-)-anisatin.
    Ogura A; Yamada K; Yokoshima S; Fukuyama T
    Org Lett; 2012 Mar; 14(6):1632-5. PubMed ID: 22369157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The first total synthesis of discorhabdin A.
    Tohma H; Harayama Y; Hashizume M; Iwata M; Kiyono Y; Egi M; Kita Y
    J Am Chem Soc; 2003 Sep; 125(37):11235-40. PubMed ID: 16220942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative spirocyclization of phenolic sulfonamides: scope and applications.
    Liang H; Ciufolini MA
    Chemistry; 2010 Nov; 16(44):13262-70. PubMed ID: 20931573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total synthesis of (±)-δ-rubromycin.
    Wang W; Xue J; Tian T; Zhang J; Wei L; Shao J; Xie Z; Li Y
    Org Lett; 2013 May; 15(10):2402-5. PubMed ID: 23635026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.
    Qin Y; Zhang L; Lv J; Luo S; Cheng JP
    Org Lett; 2015 Mar; 17(6):1469-72. PubMed ID: 25761008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total synthesis of exiguamines A and B inspired by catecholamine chemistry.
    Sofiyev V; Lumb JP; Volgraf M; Trauner D
    Chemistry; 2012 Apr; 18(16):4999-5005. PubMed ID: 22415756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric dearomatizing spirolactonization of naphthols catalyzed by spirobiindane-based chiral hypervalent iodine species.
    Dohi T; Takenaga N; Nakae T; Toyoda Y; Yamasaki M; Shiro M; Fujioka H; Maruyama A; Kita Y
    J Am Chem Soc; 2013 Mar; 135(11):4558-66. PubMed ID: 23445490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ortho-dearomatization of phenols creating all-carbon spiro-bicycles.
    Zheng C; Wang L; Li J; Wang L; Wang DZ
    Org Lett; 2013 Aug; 15(16):4046-9. PubMed ID: 23909662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of bisbenzannulated spiroketals-model studies for a modular approach to rubromycins.
    Sörgel S; Azap C; Reissig HU
    Org Lett; 2006 Oct; 8(21):4875-8. PubMed ID: 17020325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic synthesis of the IDO inhibitors exiguamine A and B.
    Volgraf M; Lumb JP; Brastianos HC; Carr G; Chung MK; Münzel M; Mauk AG; Andersen RJ; Trauner D
    Nat Chem Biol; 2008 Sep; 4(9):535-7. PubMed ID: 18677305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative carbon-carbon bond formation in the synthesis of bioactive spiro beta-lactams.
    Liang J; Chen J; Du F; Zeng X; Li L; Zhang H
    Org Lett; 2009 Jul; 11(13):2820-3. PubMed ID: 19514746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral counteranion synergistic organocatalysis under high temperature: efficient construction of optically pure spiro[cyclohexanone-oxindole] backbone.
    Lan YB; Zhao H; Liu ZM; Liu GG; Tao JC; Wang XW
    Org Lett; 2011 Sep; 13(18):4866-9. PubMed ID: 21861455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective oxidative homo- and cross-coupling of phenols with aerobic catalysts.
    Lee YE; Cao T; Torruellas C; Kozlowski MC
    J Am Chem Soc; 2014 May; 136(19):6782-5. PubMed ID: 24797179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of (±)-γ-rubromycin via a new hypoiodite-catalytic oxidative cycloetherification.
    Wei L; Xue J; Liu H; Wang W; Li Y
    Org Lett; 2012 Oct; 14(20):5302-5. PubMed ID: 23050595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.