These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22938600)

  • 1. Intracellularly grown gold nanoislands as SERS substrates for monitoring chromate, sulfate and nitrate localization sites in remediating bacteria biofilms by Raman chemical imaging.
    Ravindranath SP; Kadam US; Thompson DK; Irudayaraj J
    Anal Chim Acta; 2012 Oct; 745():1-9. PubMed ID: 22938600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman chemical imaging of chromate reduction sites in a single bacterium using intracellularly grown gold nanoislands.
    Ravindranath SP; Henne KL; Thompson DK; Irudayaraj J
    ACS Nano; 2011 Jun; 5(6):4729-36. PubMed ID: 21634405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman imaging of intracellular bioreduction of chromate in Shewanella oneidensis.
    Ravindranath SP; Henne KL; Thompson DK; Irudayaraj J
    PLoS One; 2011 Feb; 6(2):e16634. PubMed ID: 21364911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of anions by normal Raman spectroscopy and surface-enhanced Raman spectroscopy of cationic-coated substrates.
    Mosier-Boss PA; Lieberman SH
    Appl Spectrosc; 2003 Sep; 57(9):1129-37. PubMed ID: 14611043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating simultaneous chromate and nitrate reduction during microbial denitrification processes.
    Peng L; Liu Y; Gao SH; Chen X; Ni BJ
    Water Res; 2016 Feb; 89():1-8. PubMed ID: 26619398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms.
    Smith WL; Gadd GM
    J Appl Microbiol; 2000 Jun; 88(6):983-91. PubMed ID: 10849174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer.
    Zhao L; Kim TH; Kim HW; Ahn JC; Kim SY
    Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free in situ SERS imaging of biofilms.
    Ivleva NP; Wagner M; Szkola A; Horn H; Niessner R; Haisch C
    J Phys Chem B; 2010 Aug; 114(31):10184-94. PubMed ID: 20684642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SERS combined with the difference in bacterial extracellular electron transfer ability to distinguish Shewanella.
    Jiang M; Chen A; Chen J; Zeng H; Zhang W; Yuan Y; Zhou L
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123199. PubMed ID: 37544215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ surface-enhanced Raman scattering analysis of biofilm.
    Ivleva NP; Wagner M; Horn H; Niessner R; Haisch C
    Anal Chem; 2008 Nov; 80(22):8538-44. PubMed ID: 18947197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman spectroscopy of organic molecules adsorbed on metallic nanoparticles.
    Heleg-Shabtai V; Zifman A; Kendler S
    Adv Exp Med Biol; 2012; 733():53-61. PubMed ID: 22101712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly reliable SERS substrate based on plasmonic hybrid coupling between gold nanoislands and periodic nanopillar arrays.
    Choi M; Kim S; Choi SH; Park HH; Byun KM
    Opt Express; 2020 Feb; 28(3):3598-3606. PubMed ID: 32122025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy.
    Schkolnik G; Schmidt M; Mazza MG; Harnisch F; Musat N
    PLoS One; 2015; 10(12):e0145871. PubMed ID: 26709923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ; Willets KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding and Discrimination of Biofilms of Clinically Relevant Microorganisms Using Surface-Enhanced Raman Scattering.
    Keleştemur S; Çulha M
    Appl Spectrosc; 2017 Jun; 71(6):1180-1188. PubMed ID: 27708179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial sequencing of microbial reduction of chromate and nitrate in membrane bioreactor.
    Konovalova V; Nigmatullin R; Dmytrenko G; Pobigay G
    Bioprocess Biosyst Eng; 2008 Oct; 31(6):647-53. PubMed ID: 18379828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.