These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 22938841)
1. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Hun X; Liu F; Mei Z; Ma L; Wang Z; Luo X Biosens Bioelectron; 2013 Jan; 39(1):145-51. PubMed ID: 22938841 [TBL] [Abstract][Full Text] [Related]
2. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Tong P; Zhang L; Xu JJ; Chen HY Biosens Bioelectron; 2011 Nov; 29(1):97-101. PubMed ID: 21855315 [TBL] [Abstract][Full Text] [Related]
3. Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin A using upconversion nanoparticles as labels. Wu S; Duan N; Wang Z; Wang H Analyst; 2011 Jun; 136(11):2306-14. PubMed ID: 21479303 [TBL] [Abstract][Full Text] [Related]
4. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe. Wang B; Wu Y; Chen Y; Weng B; Xu L; Li C Biosens Bioelectron; 2016 Jul; 81():125-130. PubMed ID: 26938491 [TBL] [Abstract][Full Text] [Related]
5. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Bonel L; Vidal JC; Duato P; Castillo JR Biosens Bioelectron; 2011 Mar; 26(7):3254-9. PubMed ID: 21256729 [TBL] [Abstract][Full Text] [Related]
6. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Yang L; Zhang Y; Li R; Lin C; Guo L; Qiu B; Lin Z; Chen G Biosens Bioelectron; 2015 Aug; 70():268-74. PubMed ID: 25835519 [TBL] [Abstract][Full Text] [Related]
7. Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Yang C; Lates V; Prieto-Simón B; Marty JL; Yang X Biosens Bioelectron; 2012 Feb; 32(1):208-12. PubMed ID: 22221796 [TBL] [Abstract][Full Text] [Related]
8. A simple and sensitive electrochemiluminescence aptasensor for determination of ochratoxin A based on a nicking endonuclease-powered DNA walking machine. Wei M; Wang C; Xu E; Chen J; Xu X; Wei W; Liu S Food Chem; 2019 Jun; 282():141-146. PubMed ID: 30711098 [TBL] [Abstract][Full Text] [Related]
9. Electrochemiluminescent aptamer biosensor for the determination of ochratoxin A at a gold-nanoparticles-modified gold electrode using N-(aminobutyl)-N-ethylisoluminol as a luminescent label. Wang Z; Duan N; Hun X; Wu S Anal Bioanal Chem; 2010 Nov; 398(5):2125-32. PubMed ID: 20835816 [TBL] [Abstract][Full Text] [Related]
11. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of Ochratoxin A in wheat. Zhang J; Zhang X; Yang G; Chen J; Wang S Biosens Bioelectron; 2013 Mar; 41():704-9. PubMed ID: 23089328 [TBL] [Abstract][Full Text] [Related]
12. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y; Zhang J; Wang X; Duan Y Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133 [TBL] [Abstract][Full Text] [Related]
13. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Chen J; Zhang X; Cai S; Wu D; Chen M; Wang S; Zhang J Biosens Bioelectron; 2014 Jul; 57():226-31. PubMed ID: 24590125 [TBL] [Abstract][Full Text] [Related]
14. Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor. Tan Y; Wei X; Zhang Y; Wang P; Qiu B; Guo L; Lin Z; Yang HH Anal Chem; 2015 Dec; 87(23):11826-31. PubMed ID: 26542113 [TBL] [Abstract][Full Text] [Related]
15. Nicking endonuclease-assisted recycling of target-aptamer complex for sensitive electrochemical detection of adenosine triphosphate. Hu T; Wen W; Zhang X; Wang S Analyst; 2016 Feb; 141(4):1506-11. PubMed ID: 26815141 [TBL] [Abstract][Full Text] [Related]
16. Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification. Tong P; Zhao WW; Zhang L; Xu JJ; Chen HY Biosens Bioelectron; 2012 Mar; 33(1):146-51. PubMed ID: 22270050 [TBL] [Abstract][Full Text] [Related]
17. Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. Liu R; Huang Y; Ma Y; Jia S; Gao M; Li J; Zhang H; Xu D; Wu M; Chen Y; Zhu Z; Yang C ACS Appl Mater Interfaces; 2015 Apr; 7(12):6982-90. PubMed ID: 25771715 [TBL] [Abstract][Full Text] [Related]
18. Portable optical aptasensor for rapid detection of mycotoxin with a reversible ligand-grafted biosensing surface. Liu LH; Zhou XH; Shi HC Biosens Bioelectron; 2015 Oct; 72():300-5. PubMed ID: 26000463 [TBL] [Abstract][Full Text] [Related]
19. Dark field microscope-based single nanoparticle identification coupled with statistical analysis for ultrasensitive biotoxin detection in complex sample matrix. Xu S; Guo L; Chen L; Luo F; Qiu B; Lin Z Mikrochim Acta; 2020 Jun; 187(7):413. PubMed ID: 32601890 [TBL] [Abstract][Full Text] [Related]
20. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Lv L; Li D; Cui C; Zhao Y; Guo Z Biosens Bioelectron; 2017 Jan; 87():136-141. PubMed ID: 27542086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]