BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22938864)

  • 1. Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions.
    Kantartzis A; Williams GM; Balakrishnan L; Roberts RL; Surtees JA; Bambara RA
    Cell Rep; 2012 Aug; 2(2):216-22. PubMed ID: 22938864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo.
    Medina-Rivera M; Phelps S; Sridharan M; Becker J; Lamb NA; Kumar C; Sutton MD; Bielinsky A; Balakrishnan L; Surtees JA
    Nucleic Acids Res; 2023 Dec; 51(22):12185-12206. PubMed ID: 37930834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo.
    Williams GM; Surtees JA
    Genetics; 2015 Jul; 200(3):737-54. PubMed ID: 25969461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MSH2 ATPase domain mutation affects CTG*CAG repeat instability in transgenic mice.
    Tomé S; Holt I; Edelmann W; Morris GE; Munnich A; Pearson CE; Gourdon G
    PLoS Genet; 2009 May; 5(5):e1000482. PubMed ID: 19436705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates.
    Kumar C; Eichmiller R; Wang B; Williams GM; Bianco PR; Surtees JA
    DNA Repair (Amst); 2014 Jun; 18():18-30. PubMed ID: 24746922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex.
    Srivatsan A; Bowen N; Kolodner RD
    J Biol Chem; 2014 Mar; 289(13):9352-64. PubMed ID: 24550389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.
    Tomé S; Manley K; Simard JP; Clark GW; Slean MM; Swami M; Shelbourne PF; Tillier ER; Monckton DG; Messer A; Pearson CE
    PLoS Genet; 2013; 9(2):e1003280. PubMed ID: 23468640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pms2 suppresses large expansions of the (GAA·TTC)n sequence in neuronal tissues.
    Bourn RL; De Biase I; Pinto RM; Sandi C; Al-Mahdawi S; Pook MA; Bidichandani SI
    PLoS One; 2012; 7(10):e47085. PubMed ID: 23071719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins.
    van den Broek WJ; Nelen MR; Wansink DG; Coerwinkel MM; te Riele H; Groenen PJ; Wieringa B
    Hum Mol Genet; 2002 Jan; 11(2):191-8. PubMed ID: 11809728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA mismatch repair complex MutSβ promotes GAA·TTC repeat expansion in human cells.
    Halabi A; Ditch S; Wang J; Grabczyk E
    J Biol Chem; 2012 Aug; 287(35):29958-67. PubMed ID: 22787155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model.
    Ezzatizadeh V; Pinto RM; Sandi C; Sandi M; Al-Mahdawi S; Te Riele H; Pook MA
    Neurobiol Dis; 2012 Apr; 46(1):165-71. PubMed ID: 22289650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility.
    Callahan JL; Andrews KJ; Zakian VA; Freudenreich CH
    Mol Cell Biol; 2003 Nov; 23(21):7849-60. PubMed ID: 14560028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells.
    Du J; Campau E; Soragni E; Jespersen C; Gottesfeld JM
    Hum Mol Genet; 2013 Dec; 22(25):5276-87. PubMed ID: 23933738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large expansion of CTG•CAG repeats is exacerbated by MutSβ in human cells.
    Nakatani R; Nakamori M; Fujimura H; Mochizuki H; Takahashi MP
    Sci Rep; 2015 Jun; 5():11020. PubMed ID: 26047474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions.
    Concannon C; Lahue RS
    DNA Repair (Amst); 2014 Jan; 13():42-9. PubMed ID: 24359926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases.
    Freudenreich CH; Lahiri M
    Cell Cycle; 2004 Nov; 3(11):1370-4. PubMed ID: 15483399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells.
    Gannon AM; Frizzell A; Healy E; Lahue RS
    Nucleic Acids Res; 2012 Nov; 40(20):10324-33. PubMed ID: 22941650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition.
    Lee SD; Surtees JA; Alani E
    J Mol Biol; 2007 Feb; 366(1):53-66. PubMed ID: 17157869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination of Rad1-Rad10 interactions with Msh2-Msh3, Saw1 and RPA is essential for functional 3' non-homologous tail removal.
    Eichmiller R; Medina-Rivera M; DeSanto R; Minca E; Kim C; Holland C; Seol JH; Schmit M; Oramus D; Smith J; Gallardo IF; Finkelstein IJ; Lee SE; Surtees JA
    Nucleic Acids Res; 2018 Jun; 46(10):5075-5096. PubMed ID: 29660012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA mismatch repair in trinucleotide repeat instability.
    Guo J; Chen L; Li GM
    Sci China Life Sci; 2017 Oct; 60(10):1087-1092. PubMed ID: 29075942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.