BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22939331)

  • 21. Conformational features of crystal-surface cellulose from higher plants.
    Viëtor RJ; Newman RH; Ha MA; Apperley DC; Jarvis MC
    Plant J; 2002 Jun; 30(6):721-31. PubMed ID: 12061903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of the internal structure and dynamics of cellulose by
    Ghosh M; Kango N; Dey KK
    J Biomol NMR; 2019 Nov; 73(10-11):601-616. PubMed ID: 31414362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational preferences of chondroitin sulfate oligomers using partially oriented NMR spectroscopy of 13C-labeled acetyl groups.
    Yu F; Wolff JJ; Amster IJ; Prestegard JH
    J Am Chem Soc; 2007 Oct; 129(43):13288-97. PubMed ID: 17924631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMR chemical shifts as a tool to analyze first principles molecular dynamics simulations in condensed phases: the case of liquid water.
    Banyai DR; Murakhtina T; Sebastiani D
    Magn Reson Chem; 2010 Dec; 48 Suppl 1():S56-60. PubMed ID: 21104763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal and molecular structure of methyl 4-O-methyl-beta-D-ribo-hex-3-ulopyranoside.
    Adorjan I; Rosenau T; Potthast A; Kosma P; Mereiter K; Pauli J; Jäger C
    Carbohydr Res; 2004 Mar; 339(4):795-9. PubMed ID: 14980821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular conformations in the pentasaccharide LNF-1 derived from NMR spectroscopy and molecular dynamics simulations.
    Säwén E; Stevensson B; Ostervall J; Maliniak A; Widmalm G
    J Phys Chem B; 2011 Jun; 115(21):7109-21. PubMed ID: 21545157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins.
    Frank A; Onila I; Möller HM; Exner TE
    Proteins; 2011 Jul; 79(7):2189-202. PubMed ID: 21557322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR studies of the conformation of the natural sweetener rebaudioside A.
    Steinmetz WE; Lin A
    Carbohydr Res; 2009 Dec; 344(18):2533-8. PubMed ID: 19889398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Residue-specific information about the dynamics of antimicrobial peptides from (1)H-(15)N and (2)H solid-state NMR spectroscopy.
    Bertelsen K; Paaske B; Thøgersen L; Tajkhorshid E; Schiøtt B; Skrydstrup T; Nielsen NC; Vosegaard T
    J Am Chem Soc; 2009 Dec; 131(51):18335-42. PubMed ID: 19929000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Folded-chain structure of cellulose II suggested by molecular dynamics simulation.
    Yamane C; Miyamoto H; Hayakawa D; Ueda K
    Carbohydr Res; 2013 Sep; 379():30-7. PubMed ID: 23867295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical and experimental NMR study of protopine hydrochloride isomers.
    Tousek J; Malináková K; Dostál J; Marek R
    Magn Reson Chem; 2005 Jul; 43(7):578-81. PubMed ID: 15883981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid-state selective (13)C excitation and spin diffusion NMR to resolve spatial dimensions in plant cell walls.
    Foston M; Katahira R; Gjersing E; Davis MF; Ragauskas AJ
    J Agric Food Chem; 2012 Feb; 60(6):1419-27. PubMed ID: 22295909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel estimation of lipophilicity using 13C NMR chemical shifts as molecular descriptor.
    Khadikar PV; Sharma V; Varma RG
    Bioorg Med Chem Lett; 2005 Jan; 15(2):421-5. PubMed ID: 15603965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. REACH coarse-grained simulation of a cellulose fiber.
    Glass DC; Moritsugu K; Cheng X; Smith JC
    Biomacromolecules; 2012 Sep; 13(9):2634-44. PubMed ID: 22937726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A solid state 13C NMR, crystallographic, and quantum chemical investigation of chemical shifts and hydrogen bonding in histidine dipeptides.
    Cheng F; Sun H; Zhang Y; Mukkamala D; Oldfield E
    J Am Chem Soc; 2005 Sep; 127(36):12544-54. PubMed ID: 16144402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study of a moleculartweezer host-guest system by a combination of quantum-chemical calculations and solid-state NMR experiments.
    Ochsenfeld C; Koziol F; Brown SP; Schaller T; Seelbach UP; Klärner FG
    Solid State Nucl Magn Reson; 2002; 22(2-3):128-53. PubMed ID: 12469808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by (13)C CP/MAS NMR.
    Tan I; Flanagan BM; Halley PJ; Whittaker AK; Gidley MJ
    Biomacromolecules; 2007 Mar; 8(3):885-91. PubMed ID: 17266368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying guanosine self assembly at natural isotopic abundance by high-resolution 1H and 13C solid-state NMR spectroscopy.
    Webber AL; Masiero S; Pieraccini S; Burley JC; Tatton AS; Iuga D; Pham TN; Spada GP; Brown SP
    J Am Chem Soc; 2011 Dec; 133(49):19777-95. PubMed ID: 22034827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR crystallography of campho[2,3-c]pyrazole (Z' = 6): combining high-resolution 1H-13C solid-state MAS NMR spectroscopy and GIPAW chemical-shift calculations.
    Webber AL; Emsley L; Claramunt RM; Brown SP
    J Phys Chem A; 2010 Sep; 114(38):10435-42. PubMed ID: 20815383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.