These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22939334)

  • 1. Natural polymer-based magnetic hydrogels: Potential vectors for remote-controlled drug release.
    Paulino AT; Pereira AG; Fajardo AR; Erickson K; Kipper MJ; Muniz EC; Belfiore LA; Tambourgi EB
    Carbohydr Polym; 2012 Oct; 90(3):1216-25. PubMed ID: 22939334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel nanocomposites as remote-controlled biomaterials.
    Satarkar NS; Zach Hilt J
    Acta Biomater; 2008 Jan; 4(1):11-6. PubMed ID: 17855176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release.
    Mahdavinia GR; Etemadi H
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():250-60. PubMed ID: 25491827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, characterization and release of verapamil hydrochloride from polycaprolactone/acrylic acid (PCL/AA) hydrogels.
    Hanif M; Ranjha NM; Shoaib MH; Mudasser J; Yousuf RI; Khan A; Zia-Ul-Haq M
    Pak J Pharm Sci; 2011 Oct; 24(4):503-11. PubMed ID: 21959812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation.
    Liang YY; Zhang LM; Jiang W; Li W
    Chemphyschem; 2007 Nov; 8(16):2367-72. PubMed ID: 17926314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel etherified locust bean gum-alginate hydrogels for controlled release of glipizide.
    Dey P; Maiti S; Sa B
    J Biomater Sci Polym Ed; 2013; 24(6):663-83. PubMed ID: 23565908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohydrogels with magnetic nanoparticles as crosslinker: characteristics and potential use for controlled antitumor drug-delivery.
    Barbucci R; Giani G; Fedi S; Bottari S; Casolaro M
    Acta Biomater; 2012 Dec; 8(12):4244-52. PubMed ID: 22982321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release.
    Li P; Dou XQ; Tang YT; Zhu S; Gu J; Feng CL; Zhang D
    J Colloid Interface Sci; 2012 Dec; 387(1):115-22. PubMed ID: 22958852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysaccharide based hydrogels as controlled drug delivery system for GIT cancer.
    Singh B; Bala R
    Int J Biol Macromol; 2014 Apr; 65():524-33. PubMed ID: 24530332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel.
    Jaiswal MK; Banerjee R; Pradhan P; Bahadur D
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):185-94. PubMed ID: 20702074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-sensitive hydrogels based on semi-interpenetrating network (semi-IPN) of chitosan and polyvinyl pyrrolidone for clarithromycin release.
    Vaghani SS; Patel MM
    Drug Dev Ind Pharm; 2011 Oct; 37(10):1160-9. PubMed ID: 21417603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified tamarind kernel polysaccharide: a novel matrix for control release of aspirin.
    Ghosh S; Pal S
    Int J Biol Macromol; 2013 Jul; 58():296-300. PubMed ID: 23588001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery.
    Sun XF; Wang HH; Jing ZX; Mohanathas R
    Carbohydr Polym; 2013 Feb; 92(2):1357-66. PubMed ID: 23399165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The release dynamics of model drugs from the psyllium and N-hydroxymethylacrylamide based hydrogels.
    Singh B; Chauhan GS; Sharma DK; Kant A; Gupta I; Chauhan N
    Int J Pharm; 2006 Nov; 325(1-2):15-25. PubMed ID: 16844329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and properties of multi-responsive semi-IPN hydrogel modified magnetic nanoparticles as drug carrier.
    He F; Zhang Y; Li J; Liu S; Chi Z; Xu J
    J Control Release; 2011 Nov; 152 Suppl 1():e119-21. PubMed ID: 22195792
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole.
    Vaghani SS; Patel MM; Satish CS
    Carbohydr Res; 2012 Jan; 347(1):76-82. PubMed ID: 22099382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of mesoporous silica/magnetite systems in drug controlled release.
    Souza KC; Ardisson JD; Sousa EM
    J Mater Sci Mater Med; 2009 Feb; 20(2):507-12. PubMed ID: 18839283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionically cross-linked carrageenan-alginate hydrogel beads.
    Mohamadnia Z; Zohuriaan-Mehr MJ; Kabiri K; Jamshidi A; Mobedi H
    J Biomater Sci Polym Ed; 2008; 19(1):47-59. PubMed ID: 18177553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.