These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22939599)

  • 1. Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock.
    Yoo G; Park WK; Kim CW; Choi YE; Yang JW
    Bioresour Technol; 2012 Nov; 123():717-22. PubMed ID: 22939599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.
    Chen L; Li R; Ren X; Liu T
    Bioresour Technol; 2016 Aug; 214():138-143. PubMed ID: 27132220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass.
    Olmstead IL; Kentish SE; Scales PJ; Martin GJ
    Bioresour Technol; 2013 Nov; 148():615-9. PubMed ID: 24080444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodiesel from mixed culture algae via a wet lipid extraction procedure.
    Sathish A; Sims RC
    Bioresour Technol; 2012 Aug; 118():643-7. PubMed ID: 22721684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.
    Tran DT; Chen CL; Chang JS
    Bioresour Technol; 2013 May; 135():213-21. PubMed ID: 23131310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.
    Chen CL; Huang CC; Ho KC; Hsiao PX; Wu MS; Chang JS
    Bioresour Technol; 2015 Oct; 194():179-86. PubMed ID: 26196418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary amines as switchable solvents for lipid extraction from non-broken microalgae.
    Du Y; Schuur B; Samorì C; Tagliavini E; Brilman DW
    Bioresour Technol; 2013 Dec; 149():253-60. PubMed ID: 24121240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous cell disruption and lipid extraction in a microalgal biomass using a nonpolar tertiary amine.
    Huang WC; Kim JD
    Bioresour Technol; 2017 May; 232():142-145. PubMed ID: 28219051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel cell disruption technique to enhance lipid extraction from microalgae.
    Steriti A; Rossi R; Concas A; Cao G
    Bioresour Technol; 2014 Jul; 164():70-7. PubMed ID: 24836708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition.
    Abedini Najafabadi H; Vossoughi M; Pazuki G
    Bioresour Technol; 2015 Oct; 193():90-6. PubMed ID: 26117240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant.
    Huang WC; Park CW; Kim JD
    Bioresour Technol; 2017 Feb; 226():94-98. PubMed ID: 27992796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid extraction methods from microalgal biomass harvested by two different paths: screening studies toward biodiesel production.
    Ríos SD; Castañeda J; Torras C; Farriol X; Salvadó J
    Bioresour Technol; 2013 Apr; 133():378-88. PubMed ID: 23434816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods of downstream processing for the production of biodiesel from microalgae.
    Kim J; Yoo G; Lee H; Lim J; Kim K; Kim CW; Park MS; Yang JW
    Biotechnol Adv; 2013 Nov; 31(6):862-76. PubMed ID: 23632376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production.
    Hidalgo P; Ciudad G; Navia R
    Bioresour Technol; 2016 Feb; 201():360-4. PubMed ID: 26639615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.
    Park WK; Yoo G; Moon M; Kim CW; Choi YE; Yang JW
    Appl Biochem Biotechnol; 2013 Nov; 171(5):1128-42. PubMed ID: 23881782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris.
    Malekzadeh M; Abedini Najafabadi H; Hakim M; Feilizadeh M; Vossoughi M; Rashtchian D
    Bioresour Technol; 2016 Feb; 201():304-11. PubMed ID: 26687490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus.
    Kim DY; Vijayan D; Praveenkumar R; Han JI; Lee K; Park JY; Chang WS; Lee JS; Oh YK
    Bioresour Technol; 2016 Jan; 199():300-310. PubMed ID: 26342788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent extraction and reaction for the production of biodiesel from wet microalgae.
    Im H; Lee H; Park MS; Yang JW; Lee JW
    Bioresour Technol; 2014; 152():534-7. PubMed ID: 24291292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress on lipid extraction from wet algal biomass for biodiesel production.
    Ghasemi Naghdi F; González González LM; Chan W; Schenk PM
    Microb Biotechnol; 2016 Nov; 9(6):718-726. PubMed ID: 27194507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus.
    Bian X; Jin W; Gu Q; Zhou X; Xi Y; Tu R; Han SF; Xie GJ; Gao SH; Wang Q
    World J Microbiol Biotechnol; 2018 Feb; 34(3):39. PubMed ID: 29460187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.