These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22939926)

  • 21. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei.
    Skedros JG; Sorenson SM; Takano Y; Turner CH
    Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of age and loading rate on equine cortical bone failure.
    Kulin RM; Jiang F; Vecchio KS
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):57-75. PubMed ID: 21094480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation.
    Franzoso G; Zysset PK
    J Biomech Eng; 2009 Feb; 131(2):021001. PubMed ID: 19102560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical analysis and multi-scale modelling of rat cortical and trabecular bone.
    Oftadeh R; Entezari V; Spörri G; Villa-Camacho JC; Krigbaum H; Strawich E; Graham L; Rey C; Chiu H; Müller R; Hashemi HN; Vaziri A; Nazarian A
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25808343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents.
    Hamed E; Novitskaya E; Li J; Jasiuk I; McKittrick J
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():207-16. PubMed ID: 26046284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution.
    Takano Y; Turner CH; Owan I; Martin RB; Lau ST; Forwood MR; Burr DB
    J Orthop Res; 1999 Jan; 17(1):59-66. PubMed ID: 10073648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of osteon area fraction and degree of orientation of HAp crystals on mechanical properties in bovine femur.
    Yamada S; Tadano S; Fujisaki K; Kodaki Y
    J Biomech; 2013 Jan; 46(1):31-5. PubMed ID: 23084783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age-related changes in porosity and mineralization and in-service damage accumulation.
    Norman TL; Little TM; Yeni YN
    J Biomech; 2008 Sep; 41(13):2868-73. PubMed ID: 18703196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Residual stress around the cortical surface in bovine femoral diaphysis.
    Yamada S; Tadano S
    J Biomech Eng; 2010 Apr; 132(4):044503. PubMed ID: 20387976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term changes in bone mineral and biomechanical properties of vertebrae and femur in aging, dietary calcium restricted, and/or estrogen-deprived/-replaced rats.
    Jiang Y; Zhao J; Genant HK; Dequeker J; Geusens P
    J Bone Miner Res; 1997 May; 12(5):820-31. PubMed ID: 9144349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone.
    Hosseinzadeh M; Ghoreishi M; Narooei K
    J Mech Behav Biomed Mater; 2016 Jun; 59():393-403. PubMed ID: 26953961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compressive properties of trabecular bone in the distal femur.
    Burgers TA; Mason J; Niebur G; Ploeg HL
    J Biomech; 2008; 41(5):1077-85. PubMed ID: 18206893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An experimental study on the biomechanical properties of the cancellous bones of distal femur.
    Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y
    Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The anisotropy of osteonal bone and its ultrastructural implications.
    Turner CH; Chandran A; Pidaparti RM
    Bone; 1995 Jul; 17(1):85-9. PubMed ID: 7577163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in the fracture toughness of bone may not be reflected in its mineral density, porosity, and tensile properties.
    Wang XD; Masilamani NS; Mabrey JD; Alder ME; Agrawal CM
    Bone; 1998 Jul; 23(1):67-72. PubMed ID: 9662132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling.
    Borah B; Dufresne TE; Cockman MD; Gross GJ; Sod EW; Myers WR; Combs KS; Higgins RE; Pierce SA; Stevens ML
    J Bone Miner Res; 2000 Sep; 15(9):1786-97. PubMed ID: 10976998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical properties of glenoid cancellous bone.
    Kalouche I; Crépin J; Abdelmoumen S; Mitton D; Guillot G; Gagey O
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):292-8. PubMed ID: 20080324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of Mechanical Properties and Mechanical Anisotropy in Canine Bone Tissues of Various Ages.
    Luo C; Liao J; Zhu Z; Wang X; Lin X; Huang W
    Biomed Res Int; 2019; 2019():3503152. PubMed ID: 31341896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The toughness of cortical bone and its relationship with age.
    Wang X; Puram S
    Ann Biomed Eng; 2004 Jan; 32(1):123-35. PubMed ID: 14964728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.