These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22939926)

  • 41. Effect of glucose on fatigue-induced changes in the microstructure and mechanical properties of demineralized bovine cortical bone.
    Trębacz H; Zdunek A; Wlizło-Dyś E; Cybulska J; Pieczywek P
    J Appl Biomater Funct Mater; 2015 Oct; 13(3):e220-7. PubMed ID: 26391867
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties.
    Martin RB; Boardman DL
    J Biomech; 1993 Sep; 26(9):1047-54. PubMed ID: 8408087
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression.
    Trębacz H; Zdunek A; Cybulska J; Pieczywek P
    Australas Phys Eng Sci Med; 2013 Mar; 36(1):43-54. PubMed ID: 23393006
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Haversian microstructure in bovine femoral cortices: An adaptation for improved compressive strength.
    Mayya A; Banerjee A; Rajesh R
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():454-463. PubMed ID: 26652396
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interrelationships between electrical, mechanical and hydration properties of cortical bone.
    Unal M; Cingoz F; Bagcioglu C; Sozer Y; Akkus O
    J Mech Behav Biomed Mater; 2018 Jan; 77():12-23. PubMed ID: 28888142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of remodeling on the elastic properties of bone.
    Katz JL; Yoon HS; Lipson S; Maharidge R; Meunier A; Christel P
    Calcif Tissue Int; 1984; 36 Suppl 1():S31-6. PubMed ID: 6430520
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantification of Age-Related Tissue-Level Failure Strains of Rat Femoral Cortical Bones Using an Approach Combining Macrocompressive Test and Microfinite Element Analysis.
    Fan R; Gong H; Zhang R; Gao J; Jia Z; Hu Y
    J Biomech Eng; 2016 Apr; 138(4):041006. PubMed ID: 26902102
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anisotropy and strain rate effects on bovine cortical bone: combination of high-resolution imaging and dynamic loading.
    Mayeur O; Haugou G; Chaari F
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():206-8. PubMed ID: 23923911
    [No Abstract]   [Full Text] [Related]  

  • 49. Transmission scanning acoustic imaging of human cortical bone and relation with the microstructure.
    Bensamoun S; Gherbezza JM; de Belleval JF; Ho Ba Tho MC
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):639-47. PubMed ID: 15234489
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Black bear femoral geometry and cortical porosity are not adversely affected by ageing despite annual periods of disuse (hibernation).
    McGee ME; Miller DL; Auger J; Black HL; Donahue SW
    J Anat; 2007 Feb; 210(2):160-9. PubMed ID: 17261138
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone.
    Leng H; Reyes MJ; Dong XN; Wang X
    Bone; 2013 Aug; 55(2):288-91. PubMed ID: 23598045
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reference point indentation study of age-related changes in porcine femoral cortical bone.
    Rasoulian R; Raeisi Najafi A; Chittenden M; Jasiuk I
    J Biomech; 2013 Jun; 46(10):1689-96. PubMed ID: 23676290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distribution of hydroxyapatite crystallite orientation and ultrasonic wave velocity in ring-shaped cortical bone of bovine femur.
    Yamato Y; Matsukawa M; Mizukawa H; Yanagitani T; Yamazaki K; Nagano A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1298-303. PubMed ID: 18599417
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of ultrasonically determined anisotropy on longitudinal fracture of cortical bone.
    Han S; Medige J; Ziv I
    Proc Inst Mech Eng H; 1996; 210(2):127-9. PubMed ID: 8688117
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microstructure and micromechanical properties of the mid-diaphyses of human fetal femurs.
    Su XW; Feng QL; Cui FZ; Zhu XD
    Connect Tissue Res; 1997; 36(3):271-86. PubMed ID: 9512895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of growth on residual stress distribution along the radial depth of cortical cylinders from bovine femurs.
    Yamada S; Tadano S
    J Biomech; 2013 Sep; 46(13):2130-6. PubMed ID: 23895894
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extracellular bone matrix exhibits hardening elastoplasticity and more than double cortical strength: Evidence from homogeneous compression of non-tapered single micron-sized pillars welded to a rigid substrate.
    Luczynski KW; Steiger-Thirsfeld A; Bernardi J; Eberhardsteiner J; Hellmich C
    J Mech Behav Biomed Mater; 2015 Dec; 52():51-62. PubMed ID: 25842157
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contribution of collagen and mineral to the elastic anisotropy of bone.
    Hasegawa K; Turner CH; Burr DB
    Calcif Tissue Int; 1994 Nov; 55(5):381-6. PubMed ID: 7866920
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tissue level mechanical properties of cortical bone in skeletally immature and mature dogs.
    Huja SS; Phillips CA; Fernandez SA; Li Y
    Vet Comp Orthop Traumatol; 2009; 22(3):210-5. PubMed ID: 19448872
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intraosseous pressure and strain generated potential of cylindrical bone samples in the drained uniaxial condition for various loading rates.
    Hong J; Ko SO; Khang G; Mun MS
    J Mater Sci Mater Med; 2008 Jul; 19(7):2589-94. PubMed ID: 17914630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.