BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 22940129)

  • 41. Suppression of miR-26a attenuates physiological disturbances arising from exposure of Nile tilapia (
    Zhao Y; Zhou H; Ayisi CL; Wang Y; Wang J; Chen X; Zhao J
    Biol Open; 2018 Apr; 7(4):. PubMed ID: 29615414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative microRNA-seq Analysis Depicts Candidate miRNAs Involved in Skin Color Differentiation in Red Tilapia.
    Wang L; Zhu W; Dong Z; Song F; Dong J; Fu J
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29659520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An osmolality/salinity-responsive enhancer 1 (OSRE1) in intron 1 promotes salinity induction of tilapia glutamine synthetase.
    Kim C; Kültz D
    Sci Rep; 2020 Jul; 10(1):12103. PubMed ID: 32694739
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of fasting and refeeding on gene expression of slc15a1a, a gene encoding an oligopeptide transporter (PepT1), in the intestine of Mozambique tilapia.
    Orozco ZG; Soma S; Kaneko T; Watanabe S
    Comp Biochem Physiol B Biochem Mol Biol; 2017 Jan; 203():76-83. PubMed ID: 27693627
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of CRISPR/Cas9 targeting of the myo-inositol biosynthesis pathway on hyper-osmotic tolerance of tilapia cells.
    Hamar J; Cnaani A; Kültz D
    Genomics; 2024 May; 116(3):110833. PubMed ID: 38518899
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification and Characterization of Osmoregulation Related MicroRNAs in Gills of Hybrid Tilapia Under Three Types of Osmotic Stress.
    Su H; Fan J; Ma D; Zhu H
    Front Genet; 2021; 12():526277. PubMed ID: 33889171
    [TBL] [Abstract][Full Text] [Related]  

  • 47. miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos.
    Flynt AS; Thatcher EJ; Burkewitz K; Li N; Liu Y; Patton JG
    J Cell Biol; 2009 Apr; 185(1):115-27. PubMed ID: 19332888
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation of miR-429 during osmotic stress in the silverside
    Pagano AD; Barreto BF; Domingues WB; Silveira TLR; Nunes LS; Blodorn EB; Dellagostin EN; Remião MH; Robaldo RB; Campos VF
    Front Genet; 2022; 13():903201. PubMed ID: 36159973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of osmoregulatory adaptation in tilapia.
    Yan B; Wang ZH; Zhao JL
    Mol Biol Rep; 2013 Feb; 40(2):925-31. PubMed ID: 23054028
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative proteomic and metabolomic profiling reveals different osmoregulation mechanisms of tilapia cells coping with different hyperosmotic stress.
    Pan J; Wang M; Zhu J; Huang Y; Zhang F; Li E; Qin J; Chen L; Wang X
    J Proteomics; 2024 Mar; 296():105113. PubMed ID: 38346667
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of osmotic stress on the structure and function of the cell nucleus.
    Finan JD; Guilak F
    J Cell Biochem; 2010 Feb; 109(3):460-7. PubMed ID: 20024954
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of evolutionarily conserved functional MYC domains in a tilapia cell line using a vector-based CRISPR/Cas9 system.
    Kim C; Cnaani A; Kültz D
    Sci Rep; 2023 Jul; 13(1):12086. PubMed ID: 37495710
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MicroRNAs and osmotic regulation.
    Uney JB; Lightman SL
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15278-9. PubMed ID: 17030813
    [No Abstract]   [Full Text] [Related]  

  • 54. Osmotic regulation of gene action.
    Douzou P
    Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1657-61. PubMed ID: 8127862
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein-protein interactions enable rapid adaptive response to osmotic stress in fish gills.
    Evans TG; Somero GN
    Commun Integr Biol; 2009; 2(2):94-6. PubMed ID: 19704899
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interspecies Variation between Fish and Human Transthyretins in Their Binding of Thyroid-Disrupting Chemicals.
    Zhang J; Grundström C; Brännström K; Iakovleva I; Lindberg M; Olofsson A; Andersson PL; Sauer-Eriksson AE
    Environ Sci Technol; 2018 Oct; 52(20):11865-11874. PubMed ID: 30226982
    [TBL] [Abstract][Full Text] [Related]  

  • 57. lncRNA-miRNA-mRNA network in kidney transcriptome of Labeo rohita under hypersaline environment.
    Shukla N; Harshini V; Raval I; Patel AK; Joshi CG
    Sci Data; 2024 Feb; 11(1):226. PubMed ID: 38388642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasma cortisol and production of miRNAs in red drum (Sciaenops ocellatus) exposed to three distinct challenges.
    Houdelet C; Blondeau-Bidet E; Mialhe X; Lallement S; Devilliers S; Falguière JC; Geffroy B
    Fish Physiol Biochem; 2024 Apr; 50(2):757-766. PubMed ID: 38265685
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integrative miRNA-mRNA network analysis to identify crucial pathways of salinity adaptation in brain transcriptome of
    Shukla N; Vemula H; Raval I; Kumar S; Shrivastava V; Chaudhari A; Patel AK; Joshi CG
    Front Genet; 2023; 14():1209843. PubMed ID: 37719712
    [No Abstract]   [Full Text] [Related]  

  • 60. Interplay of gene expression and regulators under salinity stress in gill of Labeo rohita.
    Harshini V; Shukla N; Raval I; Kumar S; Shrivastava V; Chaudhari A; Patel AK; Joshi CG
    BMC Genomics; 2023 Jun; 24(1):336. PubMed ID: 37337199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.