These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
690 related articles for article (PubMed ID: 22940219)
41. Hepatocyte spheroid culture on a polydimethylsiloxane chip having microcavities. Nakazawa K; Izumi Y; Fukuda J; Yasuda T J Biomater Sci Polym Ed; 2006; 17(8):859-73. PubMed ID: 17024877 [TBL] [Abstract][Full Text] [Related]
42. Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Freyer JP; Sutherland RM Cancer Res; 1986 Jul; 46(7):3504-12. PubMed ID: 3708582 [TBL] [Abstract][Full Text] [Related]
43. Spheroid organization kinetics of H35 rat hepatoma model cell system on elastin-like polypeptide-polyethyleneimine copolymer substrates. Turner PA; Weeks CA; McMurphy AJ; Janorkar AV J Biomed Mater Res A; 2014 Mar; 102(3):852-61. PubMed ID: 23564487 [TBL] [Abstract][Full Text] [Related]
44. Three-dimensional modeling of transport of nutrients for multicellular tumor spheroid culture in a microchannel. Hu G; Li D Biomed Microdevices; 2007 Jun; 9(3):315-23. PubMed ID: 17203380 [TBL] [Abstract][Full Text] [Related]
45. Characteristic gene expression induced by polyurethane foam/spheroid culture of hepatoma cell line, Hep G2 as a promising cell source for bioartificial liver. Shimada M; Yamashita Y; Tanaka S; Shirabe K; Nakazawa K; Ijima H; Sakiyama R; Fukuda J; Funatsu K; Sugimachi K Hepatogastroenterology; 2007; 54(75):814-20. PubMed ID: 17591070 [TBL] [Abstract][Full Text] [Related]
46. High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture. Kim JA; Choi JH; Kim M; Rhee WJ; Son B; Jung HK; Park TH Biomaterials; 2013 Nov; 34(34):8555-63. PubMed ID: 23937911 [TBL] [Abstract][Full Text] [Related]
47. PDMS well platform for culturing millimeter-size tumor spheroids. Ratnayaka SH; Hillburn TE; Forouzan O; Shevkoplyas SS; Khismatullin DB Biotechnol Prog; 2013; 29(5):1265-9. PubMed ID: 23832880 [TBL] [Abstract][Full Text] [Related]
48. Generation and manipulation of magnetic multicellular spheroids. Ho VH; Müller KH; Barcza A; Chen R; Slater NK Biomaterials; 2010 Apr; 31(11):3095-102. PubMed ID: 20045553 [TBL] [Abstract][Full Text] [Related]
49. Mixed-ligand modification of polyamidoamine dendrimers to develop an effective scaffold for maintenance of hepatocyte spheroids. Higashiyama S; Noda M; Kawase M; Yagi K J Biomed Mater Res A; 2003 Mar; 64(3):475-82. PubMed ID: 12579561 [TBL] [Abstract][Full Text] [Related]
50. Formation of hepatocyte spheroids with structural polarity and functional bile canaliculi using nanopillar sheets. Takahashi R; Sonoda H; Tabata Y; Hisada A Tissue Eng Part A; 2010 Jun; 16(6):1983-95. PubMed ID: 20100035 [TBL] [Abstract][Full Text] [Related]
51. Enhancement of drug efflux activity via MDR1 protein by spheroid culture of human hepatic cancer cells. Oshikata A; Matsushita T; Ueoka R J Biosci Bioeng; 2011 May; 111(5):590-3. PubMed ID: 21354366 [TBL] [Abstract][Full Text] [Related]
52. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Chen K; Wu M; Guo F; Li P; Chan CY; Mao Z; Li S; Ren L; Zhang R; Huang TJ Lab Chip; 2016 Jul; 16(14):2636-43. PubMed ID: 27327102 [TBL] [Abstract][Full Text] [Related]
53. Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies. Ong SM; Zhao Z; Arooz T; Zhao D; Zhang S; Du T; Wasser M; van Noort D; Yu H Biomaterials; 2010 Feb; 31(6):1180-90. PubMed ID: 19889455 [TBL] [Abstract][Full Text] [Related]
54. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Lin RZ; Chang HY Biotechnol J; 2008 Oct; 3(9-10):1172-84. PubMed ID: 18566957 [TBL] [Abstract][Full Text] [Related]
55. Enhanced oxygen delivery reverses anaerobic metabolic states in prolonged sandwich rat hepatocyte culture. Bader A; Frühauf N; Tiedge M; Drinkgern M; De Bartolo L; Borlak JT; Steinhoff G; Haverich A Exp Cell Res; 1999 Jan; 246(1):221-32. PubMed ID: 9882531 [TBL] [Abstract][Full Text] [Related]
56. Alginate microcapsules prepared with xyloglucan as a synthetic extracellular matrix for hepatocyte attachment. Seo SJ; Akaike T; Choi YJ; Shirakawa M; Kang IK; Cho CS Biomaterials; 2005 Jun; 26(17):3607-15. PubMed ID: 15621251 [TBL] [Abstract][Full Text] [Related]
57. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Chua KN; Lim WS; Zhang P; Lu H; Wen J; Ramakrishna S; Leong KW; Mao HQ Biomaterials; 2005 May; 26(15):2537-47. PubMed ID: 15585256 [TBL] [Abstract][Full Text] [Related]
58. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Cheng NC; Wang S; Young TH Biomaterials; 2012 Feb; 33(6):1748-58. PubMed ID: 22153870 [TBL] [Abstract][Full Text] [Related]
59. Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments. Wei J; Xia T; Chen W; Ran P; Chen M; Li X J Tissue Eng Regen Med; 2020 Jun; 14(6):774-788. PubMed ID: 32285997 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of a hybrid artificial liver module based on a spheroid culture system of embryonic stem cell-derived hepatic cells. Mizumoto H; Hayashi S; Matsumoto K; Ikeda K; Kusumi T; Inamori M; Nakazawa K; Ijima H; Funatsu K; Kajiwara T Cell Transplant; 2012; 21(2-3):421-8. PubMed ID: 22793049 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]