BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22940237)

  • 1. Restricted cooperative games on metabolic networks reveal functionally important reactions.
    Sajitz-Hermstein M; Nikoloski Z
    J Theor Biol; 2012 Dec; 314():192-203. PubMed ID: 22940237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks.
    Schuster S; Fell DA; Dandekar T
    Nat Biotechnol; 2000 Mar; 18(3):326-32. PubMed ID: 10700151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional centrality as a predictor of shifts in metabolic flux states.
    Sajitz-Hermstein M; Nikoloski Z
    BMC Res Notes; 2016 Jun; 9():317. PubMed ID: 27328671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of metabolic networks based on flux centrality.
    Koschützki D; Junker BH; Schwender J; Schreiber F
    J Theor Biol; 2010 Aug; 265(3):261-9. PubMed ID: 20471988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness analysis of the Escherichia coli metabolic network.
    Edwards JS; Palsson BO
    Biotechnol Prog; 2000; 16(6):927-39. PubMed ID: 11101318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flux coupling analysis of metabolic networks is sensitive to missing reactions.
    Marashi SA; Bockmayr A
    Biosystems; 2011 Jan; 103(1):57-66. PubMed ID: 20888889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flux-coupled genes and their use in metabolic flux analysis.
    Kim HU; Kim WJ; Lee SY
    Biotechnol J; 2013 Sep; 8(9):1035-42. PubMed ID: 23420780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.
    Tabe-Bordbar S; Marashi SA
    Biotechnol Lett; 2013 Dec; 35(12):2039-44. PubMed ID: 24078125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hands-on metabolism analysis of complex biochemical networks using elementary flux modes.
    Schäuble S; Schuster S; Kaleta C
    Methods Enzymol; 2011; 500():437-56. PubMed ID: 21943910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capturing the essence of a metabolic network: a flux balance analysis approach.
    Murabito E; Simeonidis E; Smallbone K; Swinton J
    J Theor Biol; 2009 Oct; 260(3):445-52. PubMed ID: 19540851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of network reciprocity in Prisoner's Dilemma games using Full Factorial Designs of Experiment.
    Yamauchi A; Tanimoto J; Hagishima A
    Biosystems; 2011 Jan; 103(1):85-92. PubMed ID: 20955762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting novel pathways in genome-scale metabolic networks.
    Schuster S; de Figueiredo LF; Kaleta C
    Biochem Soc Trans; 2010 Oct; 38(5):1202-5. PubMed ID: 20863284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of enzyme activities into metabolic flux distributions by elementary mode analysis.
    Kurata H; Zhao Q; Okuda R; Shimizu K
    BMC Syst Biol; 2007 Jul; 1():31. PubMed ID: 17640350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting cell-free systems: Implementation and debugging of a system of biotransformations.
    Bujara M; Schümperli M; Billerbeck S; Heinemann M; Panke S
    Biotechnol Bioeng; 2010 Jun; 106(3):376-89. PubMed ID: 20091765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiobjective flux balancing using the NISE method for metabolic network analysis.
    Oh YG; Lee DY; Lee SY; Park S
    Biotechnol Prog; 2009; 25(4):999-1008. PubMed ID: 19572405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum.
    Wiback SJ; Mahadevan R; Palsson BØ
    Biotechnol Bioeng; 2004 May; 86(3):317-31. PubMed ID: 15083512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo sampling and principal component analysis of flux distributions yield topological and modular information on metabolic networks.
    Sariyar B; Perk S; Akman U; Hortaçsu A
    J Theor Biol; 2006 Sep; 242(2):389-400. PubMed ID: 16860341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation.
    van Winden WA; van Gulik WM; Schipper D; Verheijen PJ; Krabben P; Vinke JL; Heijnen JJ
    Biotechnol Bioeng; 2003 Jul; 83(1):75-92. PubMed ID: 12740935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.