These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22940289)

  • 1. Glutathione homeostasis as an important and novel factor controlling blossom-end rot development in calcium-deficient tomato fruits.
    Mestre TC; Garcia-Sanchez F; Rubio F; Martinez V; Rivero RM
    J Plant Physiol; 2012 Nov; 169(17):1719-27. PubMed ID: 22940289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit.
    de Freitas ST; Handa AK; Wu Q; Park S; Mitcham EJ
    Plant J; 2012 Sep; 71(5):824-35. PubMed ID: 22563738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening.
    Jimenez A; Creissen G; Kular B; Firmin J; Robinson S; Verhoeyen M; Mullineaux P
    Planta; 2002 Mar; 214(5):751-8. PubMed ID: 11882944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments.
    Tonetto de Freitas S; McElrone AJ; Shackel KA; Mitcham EJ
    J Exp Bot; 2014 Jan; 65(1):235-47. PubMed ID: 24220654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of calcium in the pericarp cells of tomato fruits during the development of blossom-end rot.
    Suzuki K; Shono M; Egawa Y
    Protoplasma; 2003; 222(3-4):149-56. PubMed ID: 14714203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cellular hypothesis for the induction of blossom-end rot in tomato fruit.
    Ho LC; White PJ
    Ann Bot; 2005 Mar; 95(4):571-81. PubMed ID: 15642726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microplate quantification of enzymes of the plant ascorbate-glutathione cycle.
    Murshed R; Lopez-Lauri F; Sallanon H
    Anal Biochem; 2008 Dec; 383(2):320-2. PubMed ID: 18682244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress.
    Manai J; Gouia H; Corpas FJ
    J Plant Physiol; 2014 Jul; 171(12):1028-35. PubMed ID: 24974329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis.
    Tonetto de Freitas S; Padda M; Wu Q; Park S; Mitcham EJ
    Plant Physiol; 2011 Jun; 156(2):844-55. PubMed ID: 21464475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H
    Liu T; Hu X; Zhang J; Zhang J; Du Q; Li J
    BMC Plant Biol; 2018 Feb; 18(1):34. PubMed ID: 29448924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress.
    Shu DF; Wang LY; Duan M; Deng YS; Meng QW
    Plant Physiol Biochem; 2011 Oct; 49(10):1228-37. PubMed ID: 21530286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity.
    Cervilla LM; Blasco B; Ríos JJ; Romero L; Ruiz JM
    Ann Bot; 2007 Oct; 100(4):747-56. PubMed ID: 17660516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic approach to blossom-end rot in tomato fruits (Lycopersicon esculentum M.): antioxidant enzymes and the pentose phosphate pathway.
    Casado-Vela J; Sellés S; Bru Martínez R
    Proteomics; 2005 Jul; 5(10):2488-96. PubMed ID: 15892162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state.
    Ding S; Lu Q; Zhang Y; Yang Z; Wen X; Zhang L; Lu C
    Plant Mol Biol; 2009 Mar; 69(5):577-92. PubMed ID: 19043665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants? - Evaluation of oxidative damage and antioxidant responses in tomato.
    Soares C; Pereira R; Spormann S; Fidalgo F
    Environ Pollut; 2019 Apr; 247():256-265. PubMed ID: 30685666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is monodehydroascorbate reductase activity in leaf tissue critical for the maintenance of yield in tomato?
    Truffault V; Riqueau G; Garchery C; Gautier H; Stevens RG
    J Plant Physiol; 2018 Mar; 222():1-8. PubMed ID: 29287283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves.
    Kuzniak E; Skłodowska M
    J Exp Bot; 2004 Mar; 55(397):605-12. PubMed ID: 14966215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium starvation induces oxidative stress in Solanum lycopersicum L. roots.
    Hernandez M; Fernandez-Garcia N; Garcia-Garma J; Rubio-Asensio JS; Rubio F; Olmos E
    J Plant Physiol; 2012 Sep; 169(14):1366-74. PubMed ID: 22771251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle.
    Singh S; Singh A; Srivastava PK; Prasad SM
    J Photochem Photobiol B; 2018 Jan; 178():76-84. PubMed ID: 29125985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants.
    Rai GK; Rai NP; Rathaur S; Kumar S; Singh M
    Plant Physiol Biochem; 2013 Aug; 69():90-100. PubMed ID: 23728392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.