BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22940290)

  • 1. Separation of abscission zone cells in detached Azolla roots depends on apoplastic pH.
    Fukuda K; Yamada Y; Miyamoto K; Ueda J; Uheda E
    J Plant Physiol; 2013 Jan; 170(1):18-24. PubMed ID: 22940290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breakdown of middle lamella pectin by (●) OH during rapid abscission in Azolla.
    Yamada Y; Koibuchi M; Miyamoto K; Ueda J; Uheda E
    Plant Cell Environ; 2015 Aug; 38(8):1555-64. PubMed ID: 25581142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled free radical attack in the apoplast: a hypothesis for roles of O, N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla.
    Cohen MF; Gurung S; Fukuto JM; Yamasaki H
    Plant Sci; 2014 Mar; 217-218():120-6. PubMed ID: 24467903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pore of the leaf cavity of Azolla species: teat cell differentiation and cell wall projections.
    Veys P; Lejeune A; Van Hove C
    Protoplasma; 2002 Feb; 219(1-2):31-42. PubMed ID: 11926065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further examination of abscission zone cells as ethylene target cells in higher plants.
    McManus MT
    Ann Bot; 2008 Jan; 101(2):285-92. PubMed ID: 17965027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf abscission in Impatiens (Balsaminaceae) is due to loss of highly de-esterified homogalacturonans in the middle lamellae.
    Bowling AJ; Vaughn KC
    Am J Bot; 2011 Apr; 98(4):619-29. PubMed ID: 21613162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abscission of Azolla branches induced by ethylene and sodium azide.
    Uheda E; Nakamura S
    Plant Cell Physiol; 2000 Dec; 41(12):1365-72. PubMed ID: 11134422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead accumulation in the aquatic fern Azolla filiculoides.
    Oren Benaroya R; Tzin V; Tel-Or E; Zamski E
    Plant Physiol Biochem; 2004; 42(7-8):639-45. PubMed ID: 15331093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of cell-wall autolysis and pectin degradation by cations.
    Wehr JB; Menzies NW; Blamey FP
    Plant Physiol Biochem; 2004 Jun; 42(6):485-92. PubMed ID: 15246061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell Wall Composition and Ultrastructural Immunolocalization of Pectin and Arabinogalactan Protein during Olea europaea L. Fruit Abscission.
    Parra R; Paredes MA; Labrador J; Nunes C; Coimbra MA; Fernandez-Garcia N; Olmos E; Gallardo M; Gomez-Jimenez MC
    Plant Cell Physiol; 2020 Apr; 61(4):814-825. PubMed ID: 32016408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IDA: a peptide ligand regulating cell separation processes in Arabidopsis.
    Aalen RB; Wildhagen M; Stø IM; Butenko MA
    J Exp Bot; 2013 Dec; 64(17):5253-61. PubMed ID: 24151306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata.
    Cohen MF; Gurung S; Birarda G; Holman HY; Yamasaki H
    Front Plant Sci; 2015; 6():518. PubMed ID: 26217368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethylene-induced differential gene expression during abscission of citrus leaves.
    Agustí J; Merelo P; Cercós M; Tadeo FR; Talón M
    J Exp Bot; 2008; 59(10):2717-33. PubMed ID: 18515267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drought Disrupts Auxin Localization in Abscission Zone and Modifies Cell Wall Structure Leading to Flower Separation in Yellow Lupine.
    Florkiewicz AB; Kućko A; Kapusta M; Burchardt S; Przywieczerski T; Czeszewska-Rosiak G; Wilmowicz E
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32961941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rosa hybrida RhERF1 and RhERF4 mediate ethylene- and auxin-regulated petal abscission by influencing pectin degradation.
    Gao Y; Liu Y; Liang Y; Lu J; Jiang C; Fei Z; Jiang CZ; Ma C; Gao J
    Plant J; 2019 Sep; 99(6):1159-1171. PubMed ID: 31111587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy of leaf abscission in the Amur honeysuckle (Lonicera maackii, Caprifoliaceae): a scanning electron microscopy study.
    Wang HF; Ross Friedman CM; Shi JC; Zheng ZY
    Protoplasma; 2010 Nov; 247(1-2):111-6. PubMed ID: 20512386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of lead nanoparticles by the aquatic water fern, Salvinia minima Baker, when exposed to high lead concentration.
    Castro-Longoria E; Trejo-Guillén K; Vilchis-Nestor AR; Avalos-Borja M; Andrade-Canto SB; Leal-Alvarado DA; Santamaría JM
    Colloids Surf B Biointerfaces; 2014 Feb; 114():277-83. PubMed ID: 24211828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamine-Induced Rapid Root Abscission in Azolla pinnata.
    Gurung S; Cohen MF; Fukuto J; Yamasaki H
    J Amino Acids; 2012; 2012():493209. PubMed ID: 22997568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell wall dissolution and enzyme secretion during leaf abscission.
    Morre DJ
    Plant Physiol; 1968 Sep; 43(9 Pt B):1545-59. PubMed ID: 16657018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Craterostigma plantagineum cell wall composition is remodelled during desiccation and the glycine-rich protein CpGRP1 interacts with pectins through clustered arginines.
    Jung NU; Giarola V; Chen P; Knox JP; Bartels D
    Plant J; 2019 Nov; 100(4):661-676. PubMed ID: 31350933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.