BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22940330)

  • 1. Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions.
    Mujtaba G; Choi W; Lee CG; Lee K
    Bioresour Technol; 2012 Nov; 123():279-83. PubMed ID: 22940330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].
    Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source.
    Abreu AP; Fernandes B; Vicente AA; Teixeira J; Dragone G
    Bioresour Technol; 2012 Aug; 118():61-6. PubMed ID: 22705507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.
    Yeh KL; Chang JS
    Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions.
    Lv JM; Cheng LH; Xu XH; Zhang L; Chen HL
    Bioresour Technol; 2010 Sep; 101(17):6797-804. PubMed ID: 20456951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris.
    Přibyl P; Cepák V; Zachleder V
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):549-61. PubMed ID: 22361856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions.
    Liang Y; Sarkany N; Cui Y
    Biotechnol Lett; 2009 Jul; 31(7):1043-9. PubMed ID: 19322523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris.
    Bhola V; Desikan R; Santosh SK; Subburamu K; Sanniyasi E; Bux F
    J Biosci Bioeng; 2011 Mar; 111(3):377-82. PubMed ID: 21185776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():157-65. PubMed ID: 23186680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium.
    Feng Y; Li C; Zhang D
    Bioresour Technol; 2011 Jan; 102(1):101-5. PubMed ID: 20620053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods.
    Rashid N; Lee K; Mahmood Q
    Bioresour Technol; 2011 Jan; 102(2):2101-4. PubMed ID: 20826084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of iron on growth and lipid accumulation in Chlorella vulgaris.
    Liu ZY; Wang GC; Zhou BC
    Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
    Pal D; Khozin-Goldberg I; Cohen Z; Boussiba S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1429-41. PubMed ID: 21431397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor.
    Rodolfi L; Chini Zittelli G; Bassi N; Padovani G; Biondi N; Bonini G; Tredici MR
    Biotechnol Bioeng; 2009 Jan; 102(1):100-12. PubMed ID: 18683258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies to enhance cell growth and achieve high-level oil production of a Chlorella vulgaris isolate.
    Chen CY; Yeh KL; Su HM; Lo YC; Chen WM; Chang JS
    Biotechnol Prog; 2010; 26(3):679-86. PubMed ID: 20187076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of exogenous CO₂ on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater.
    Hu B; Min M; Zhou W; Li Y; Mohr M; Cheng Y; Lei H; Liu Y; Lin X; Chen P; Ruan R
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1661-73. PubMed ID: 22367636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.