BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22940336)

  • 1. Comparison of Escherichia coli and anaerobic consortia derived from compost as anodic biocatalysts in a glycerol-oxidizing microbial fuel cell.
    Reiche A; Kirkwood KM
    Bioresour Technol; 2012 Nov; 123():318-23. PubMed ID: 22940336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electricity generation by Propionibacterium freudenreichii in a mediatorless microbial fuel cell.
    Reiche A; Sivell JL; Kirkwood KM
    Biotechnol Lett; 2016 Jan; 38(1):51-5. PubMed ID: 26306722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerol degradation in single-chamber microbial fuel cells.
    Nimje VR; Chen CY; Chen CC; Chen HR; Tseng MJ; Jean JS; Chang YF
    Bioresour Technol; 2011 Feb; 102(3):2629-34. PubMed ID: 21051224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.
    Zhuang L; Zhou S; Yuan Y; Liu T; Wu Z; Cheng J
    Bioresour Technol; 2011 Jan; 102(1):284-9. PubMed ID: 20598528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli.
    Zhang T; Cui C; Chen S; Ai X; Yang H; Shen P; Peng Z
    Chem Commun (Camb); 2006 Jun; (21):2257-9. PubMed ID: 16718321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy recovery from energy rich vegetable products with microbial fuel cells.
    Clauwaert P; van der Ha D; Verstraete W
    Biotechnol Lett; 2008 Nov; 30(11):1947-51. PubMed ID: 18575805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.
    Chookaew T; Prasertsan P; Ren ZJ
    N Biotechnol; 2014 Mar; 31(2):179-84. PubMed ID: 24380781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation.
    Mohanakrishna G; Venkata Mohan S; Sarma PN
    J Hazard Mater; 2010 May; 177(1-3):487-94. PubMed ID: 20071076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper recovery combined with electricity production in a microbial fuel cell.
    Heijne AT; Liu F; Weijden Rv; Weijma J; Buisman CJ; Hamelers HV
    Environ Sci Technol; 2010 Jun; 44(11):4376-81. PubMed ID: 20462261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures.
    Selembo PA; Perez JM; Lloyd WA; Logan BE
    Biotechnol Bioeng; 2009 Dec; 104(6):1098-106. PubMed ID: 19623563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.
    Li F; Yin C; Sun L; Li Y; Guo X; Song H
    Biotechnol J; 2018 May; 13(5):e1700491. PubMed ID: 29044893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power production and wastewater treatment simultaneously by dual-chamber microbial fuel cell technique.
    Izadi P; Rahimnejad M; Ghoreyshi A
    Biotechnol Appl Biochem; 2015; 62(4):483-8. PubMed ID: 25640146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell.
    Sun M; Tong ZH; Sheng GP; Chen YZ; Zhang F; Mu ZX; Wang HL; Zeng RJ; Liu XW; Yu HQ; Wei L; Ma F
    Biosens Bioelectron; 2010 Oct; 26(2):470-6. PubMed ID: 20692154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electricity generation from indole and microbial community analysis in the microbial fuel cell.
    Luo Y; Zhang R; Liu G; Li J; Li M; Zhang C
    J Hazard Mater; 2010 Apr; 176(1-3):759-64. PubMed ID: 20006429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells.
    Jiang D; Li B; Jia W; Lei Y
    Appl Biochem Biotechnol; 2010 Jan; 160(1):182-96. PubMed ID: 19214793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures.
    Watson VJ; Logan BE
    Biotechnol Bioeng; 2010 Feb; 105(3):489-98. PubMed ID: 19787640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell.
    Feng Y; Yang Q; Wang X; Liu Y; Lee H; Ren N
    Bioresour Technol; 2011 Jan; 102(1):411-5. PubMed ID: 20889062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electricity production by an overflow-type wetted-wall microbial fuel cell.
    Li Z; Zhang X; Zeng Y; Lei L
    Bioresour Technol; 2009 May; 100(9):2551-5. PubMed ID: 19157869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste.
    Lee Y; Nirmalakhandan N
    Bioresour Technol; 2011 May; 102(10):5831-5. PubMed ID: 21420293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell.
    Venkata Mohan S; Mohanakrishna G; Sarma PN
    Bioresour Technol; 2010 Feb; 101(3):970-6. PubMed ID: 19818602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.