BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22940343)

  • 1. Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture.
    Hadj-Romdhane F; Jaouen P; Pruvost J; Grizeau D; Van Vooren G; Bourseau P
    Bioresour Technol; 2012 Nov; 123():366-74. PubMed ID: 22940343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The culture of Chlorella vulgaris in a recycled supernatant: effects on biomass production and medium quality.
    Hadj-Romdhane F; Zheng X; Jaouen P; Pruvost J; Grizeau D; Croué JP; Bourseau P
    Bioresour Technol; 2013 Mar; 132():285-92. PubMed ID: 23411460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle.
    Discart V; Bilad MR; Marbelia L; Vankelecom IF
    Bioresour Technol; 2014; 152():321-8. PubMed ID: 24315936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source.
    Abreu AP; Fernandes B; Vicente AA; Teixeira J; Dragone G
    Bioresour Technol; 2012 Aug; 118():61-6. PubMed ID: 22705507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process.
    Du Z; Hu B; Shi A; Ma X; Cheng Y; Chen P; Liu Y; Lin X; Ruan R
    Bioresour Technol; 2012 Dec; 126():354-7. PubMed ID: 23116820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs.
    Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B
    Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement on light penetrability and microalgae biomass production by periodically pre-harvesting Chlorella vulgaris cells with culture medium recycling.
    Huang Y; Sun Y; Liao Q; Fu Q; Xia A; Zhu X
    Bioresour Technol; 2016 Sep; 216():669-76. PubMed ID: 27289058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of iron on growth and lipid accumulation in Chlorella vulgaris.
    Liu ZY; Wang GC; Zhou BC
    Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell Growth, Lipid Production and Productivity in Photosynthetic Microalga Chlorella vulgaris under Different Nitrogen Concentrations and Culture Media Replacement.
    Morowvat MH; Ghasemi Y
    Recent Pat Food Nutr Agric; 2018; 9(2):142-151. PubMed ID: 29886843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions.
    Lv JM; Cheng LH; Xu XH; Zhang L; Chen HL
    Bioresour Technol; 2010 Sep; 101(17):6797-804. PubMed ID: 20456951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26.
    Ramírez-López C; Chairez I; Fernández-Linares L
    Bioresour Technol; 2016 Jul; 212():207-216. PubMed ID: 27099946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].
    Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium Uptake by the Green Microalga Chlorella vulgaris in Batch Cultures.
    Ben Amor-Ben Ayed H; Taidi B; Ayadi H; Pareau D; Stambouli M
    J Microbiol Biotechnol; 2016 Mar; 26(3):503-10. PubMed ID: 26628253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.
    Yeh KL; Chang JS
    Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of recycling culture medium after harvesting of Chlorella vulgaris biomass by flocculating bacteria on microalgal growth and the functionary mechanism.
    Li Y; Zhang Z; Duan Y; Wang H
    Bioresour Technol; 2019 May; 280():188-198. PubMed ID: 30771574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of diluted urine for cultivation of Chlorella vulgaris.
    Jaatinen S; Lakaniemi AM; Rintala J
    Environ Technol; 2016; 37(9):1159-70. PubMed ID: 26508358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and biochemical composition of Chlorella vulgaris in different growth media.
    Chia MA; Lombardi AT; Melão Mda G
    An Acad Bras Cienc; 2013; 85(4):1427-38. PubMed ID: 24141409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of Chlorella vulgaris.
    Li J; Li C; Lan CQ; Liao D
    Microb Cell Fact; 2018 Jul; 17(1):111. PubMed ID: 29986703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.