These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 22940403)

  • 21. Microbial production of bulk chemicals: development of anaerobic processes.
    Weusthuis RA; Lamot I; van der Oost J; Sanders JP
    Trends Biotechnol; 2011 Apr; 29(4):153-8. PubMed ID: 21227520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Transcriptome platforms and applications to metabolic engineering].
    Shi S; Chen T; Zhao X
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1187-98. PubMed ID: 21141108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational medium optimization based on comparative metabolic profiling analysis to improve fumaric acid production.
    Wang G; Huang D; Qi H; Wen J; Jia X; Chen Y
    Bioresour Technol; 2013 Jun; 137():1-8. PubMed ID: 23570778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial production of metabolites and associated enzymatic reactions under high pressure.
    Dong Y; Jiang H
    World J Microbiol Biotechnol; 2016 Nov; 32(11):178. PubMed ID: 27628338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols.
    Yu C; Cao Y; Zou H; Xian M
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):573-83. PubMed ID: 21052988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fermentative butanol production by Clostridia.
    Lee SY; Park JH; Jang SH; Nielsen LK; Kim J; Jung KS
    Biotechnol Bioeng; 2008 Oct; 101(2):209-28. PubMed ID: 18727018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microparticle based morphology engineering of filamentous microorganisms for industrial bio-production.
    Walisko R; Krull R; Schrader J; Wittmann C
    Biotechnol Lett; 2012 Nov; 34(11):1975-82. PubMed ID: 22782271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of fumaric acid by simultaneous saccharification and fermentation of starchy materials with 2-deoxyglucose-resistant mutant strains of Rhizopus oryzae.
    Deng Y; Li S; Xu Q; Gao M; Huang H
    Bioresour Technol; 2012 Mar; 107():363-7. PubMed ID: 22217732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Progress in microbial production of succinic acid].
    Liu R; Liang L; Wu M; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1386-97. PubMed ID: 24432654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.
    Li QZ; Jiang XL; Feng XJ; Wang JM; Sun C; Zhang HB; Xian M; Liu HZ
    J Microbiol Biotechnol; 2016 Jan; 26(1):1-8. PubMed ID: 26403818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fermentative approach towards optimizing directed biosynthesis of fumaric acid by Rhizopus oryzae 1526 utilizing apple industry waste biomass.
    Das RK; Brar SK; Verma M
    Fungal Biol; 2015 Dec; 119(12):1279-1290. PubMed ID: 26615750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?
    Abdel-Banat BM; Hoshida H; Ano A; Nonklang S; Akada R
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):861-7. PubMed ID: 19820925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Recent developments in L-lactate fermentation by genetically modified microorganisms].
    Jiang X; Wang L; Zhang G; Yu B; Zeng Q
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1398-410. PubMed ID: 24432655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol.
    Huang D; Wang R; Du W; Wang G; Xia M
    Bioresour Technol; 2015 Nov; 196():263-72. PubMed ID: 26253910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae.
    Wang G; Huang D; Li Y; Wen J; Jia X
    Bioresour Technol; 2015 Mar; 180():119-27. PubMed ID: 25594507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biotechnological production of gluconic acid: future implications.
    Singh OV; Kumar R
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):713-22. PubMed ID: 17525864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Progress in metabolic mechanism of docosahexenoic acid production by fermentation].
    Feng Y; Ren L; Wei P; Tong Q; Ji X; Huang H
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1225-31. PubMed ID: 21141112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy.
    Fu YQ; Li S; Chen Y; Xu Q; Huang H; Sheng XY
    Appl Biochem Biotechnol; 2010 Oct; 162(4):1031-8. PubMed ID: 19936636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New perspectives of gibberellic acid production: a review.
    Rodrigues C; Vandenberghe LP; de Oliveira J; Soccol CR
    Crit Rev Biotechnol; 2012 Sep; 32(3):263-73. PubMed ID: 22044348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Progress in metabolic engineering of microbial production of 1,3-dihydroxyacetone].
    Sun L; Hu Z; Zheng Y; Shen Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1218-24. PubMed ID: 21141111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.