These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22940479)

  • 1. A regional approach for mineral soil weathering estimation and critical load assessment in boreal Saskatchewan, Canada.
    Whitfield CJ; Watmough SA
    Sci Total Environ; 2012 Oct; 437():165-72. PubMed ID: 22940479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regionalization of soil base cation weathering for evaluating stream water acidification in the Appalachian Mountains, USA.
    McDonnell TC; Cosby BJ; Sullivan TJ
    Environ Pollut; 2012 Mar; 162():338-44. PubMed ID: 22243883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainties in critical loads and target loads of sulphur and nitrogen for European forests: analysis and quantification.
    Reinds GJ; de Vries W
    Sci Total Environ; 2010 Mar; 408(8):1960-70. PubMed ID: 20053422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfate adsorption properties of acid-sensitive soils in the Athabasca oil sands region in Alberta, Canada.
    Jung K; Ok YS; Chang SX
    Chemosphere; 2011 Jul; 84(4):457-63. PubMed ID: 21489599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of atmospheric base cation deposition for preventing soil acidification in the Athabasca Oil Sands Region of Canada.
    Watmough SA; Whitfield CJ; Fenn ME
    Sci Total Environ; 2014 Sep; 493():1-11. PubMed ID: 24937487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling soil acidification in the Athabasca Oil Sands region, Alberta, Canada.
    Whitfield CJ; Aherne J; Watmough SA
    Environ Sci Technol; 2009 Aug; 43(15):5844-50. PubMed ID: 19731686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison among model estimates of critical loads of acidic deposition using different sources and scales of input data.
    McDonnell TC; Cosby BJ; Sullivan TJ; McNulty SG; Cohen EC
    Environ Pollut; 2010 Sep; 158(9):2934-9. PubMed ID: 20609503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculating critical loads for acidification for five forested catchments in China using an extended steady state function.
    Zhao Y; Duan L; Larssen T; Mulder J; Hu L; Hao J
    Sci Total Environ; 2007 Nov; 387(1-3):54-67. PubMed ID: 17822745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimates of critical acid loads and exceedances for forest soils across the conterminous United States.
    McNulty SG; Cohen EC; Moore Myers JA; Sullivan TJ; Li H
    Environ Pollut; 2007 Oct; 149(3):281-92. PubMed ID: 17629382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid deposition in the Athabasca Oil Sands Region: a policy perspective.
    Whitfield CJ; Watmough SA
    Environ Monit Assess; 2015 Dec; 187(12):771. PubMed ID: 26607154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation and mapping of critical loads of sulphur and nitrogen for forest soils in Galicia (NW Spain).
    Rodríguez-Lado L; Macías F
    Sci Total Environ; 2006 Aug; 366(2-3):760-71. PubMed ID: 16297439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different critical load approaches for assessing streamwater acid-sensitivity to broadleaf woodland expansion.
    Gagkas Z; Heal KV; Nisbet TR; Stuart N
    Sci Total Environ; 2010 Feb; 408(6):1235-44. PubMed ID: 20071010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anthropogenic acidification effects in primeval forests in the Transcarpathian Mts., western Ukraine.
    Oulehle F; Hleb R; Houska J; Samonil P; Hofmeister J; Hruska J
    Sci Total Environ; 2010 Jan; 408(4):856-64. PubMed ID: 19914682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of atmospheric acid deposition on tree growth and forest understory vegetation in the Athabasca Oil Sands Region.
    Bartels SF; Gendreau-Berthiaume B; Macdonald SE
    Sci Total Environ; 2019 Dec; 696():133877. PubMed ID: 31442720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conceptual framework: redefining forest soil's critical acid loads under a changing climate.
    McNulty SG; Boggs JL
    Environ Pollut; 2010 Jun; 158(6):2053-8. PubMed ID: 20045233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous assessment of deposition effects of base cations, sulfur, and nitrogen using an extended critical load function for acidification.
    Zhao Y; Duan L; Larssen T; Hu L; Hao J
    Environ Sci Technol; 2007 Mar; 41(6):1815-20. PubMed ID: 17410769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of different sulfur fractions in Chinese forest soil under acid deposition.
    Wang Z; Zhang X; Zhang Y; Wang Z; Mulder J
    J Environ Monit; 2011 Sep; 13(9):2463-70. PubMed ID: 21779600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the "SAFE" model.
    Małek S; Martinson L; Sverdrup H
    Environ Pollut; 2005 Oct; 137(3):568-73. PubMed ID: 16005767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting acidification recovery at the Hubbard Brook Experimental Forest, New Hampshire: evaluation of four models.
    Tominaga K; Aherne J; Watmough SA; Alveteg M; Cosby BJ; Driscoll CT; Posch M; Pourmokhtarian A
    Environ Sci Technol; 2010 Dec; 44(23):9003-9. PubMed ID: 21028800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The adsorption and release of sulfur in mineral and organic soils of the Athabasca Oil Sands Region, Alberta, Canada.
    Whitfield CJ; Adkinson A; Eimers MC; Watmough SA
    J Environ Qual; 2010; 39(3):1108-12. PubMed ID: 20400606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.