BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 229406)

  • 1. Circadian rhythms of indoleamines and serotonin N-acetyltransferase activity in the pineal gland.
    Deguchi T
    Mol Cell Biochem; 1979 Sep; 27(1):57-66. PubMed ID: 229406
    [No Abstract]   [Full Text] [Related]  

  • 2. Simultaneous determination of N-acetyltransferase activity, hydroxyindole-O-methyl-transferase activity, and melatonin content in the pineal gland of the Syrian hamster.
    Steinlechner S; Champney TH; Houston ML; Reiter RJ
    Proc Soc Exp Biol Med; 1984 Jan; 175(1):93-7. PubMed ID: 6538043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of 6-hydroxydopamine on pineal norepinephrine content and enzyme activity in the cyclic female rat.
    Shivers BD; Fix JA; Yochim JM
    Biol Reprod; 1979 Sep; 21(2):393-9. PubMed ID: 573639
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of an earth-strength magnetic field on pineal melatonin synthesis in pigeons.
    Reuss S; Semm P
    Naturwissenschaften; 1987 Jan; 74(1):38-9. PubMed ID: 3561518
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of isoproterenol upon serotonin N-acetyltransferase (SNAT) activity and melatonin production in the chick pineal gland.
    Miller CH; Lakin ML; Stott ML; Wenger N; Rosenblatt LS; Winters WD
    Neuropharmacology; 1981 Nov; 20(11):1059-65. PubMed ID: 7322282
    [No Abstract]   [Full Text] [Related]  

  • 6. Rapid nocturnal increase in ovine pineal N-acetyltransferase activity and melatonin synthesis: effects of cycloheximide.
    Namboodiri MA; Sugden D; Klein DC; Grady R; Mefford IN
    J Neurochem; 1985 Sep; 45(3):832-5. PubMed ID: 2411856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythms in ocular and pineal N-acetyltransferase: a portrait of an enzyme clock.
    Binkley S
    Comp Biochem Physiol A Comp Physiol; 1983; 75(2):123-9. PubMed ID: 6135530
    [No Abstract]   [Full Text] [Related]  

  • 8. Influence of light irradiance on hydroxyindole-O-methyltransferase activity, serotonin-N-acetyltransferase activity, and radioimmunoassayable melatonin levels in the pineal gland of the diurnally active Richardson's ground squirrel.
    Reiter RJ; Hurlbut EC; Brainard GC; Steinlechner S; Richardson BA
    Brain Res; 1983 Dec; 288(1-2):151-7. PubMed ID: 6686468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmic melatonin biosynthesis in a photoreceptive pineal organ: a study in the pike.
    Falcón J; Guerlotté JF; Voisin P; Collin JP
    Neuroendocrinology; 1987 Jun; 45(6):479-86. PubMed ID: 3614551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The melatonin rhythm generating system: developmental aspects.
    Klein DC; Namboodiri MA; Auerbach DA
    Life Sci; 1981 May; 28(18):1975-86. PubMed ID: 6264261
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of anticonvulsant drugs in vivo on rat pineal N-acetyltransferase (EC 2.3.1.5) and hydroxyindole-O-methyltransferase (EC 2.1.1.4).
    Morton DJ
    J Pineal Res; 1986; 3(2):181-6. PubMed ID: 3723330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of a nocturnal rise in either norepinephrine, N-acetyltransferase, hydroxyindole-O-methyltransferase or melatonin in the pineal gland of the domestic pig kept under natural environment photoperiods.
    Reiter RJ; Britt JH; Armstrong JD
    Neurosci Lett; 1987 Oct; 81(1-2):171-6. PubMed ID: 3696466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of anticonvulsant drugs on the activity of acetyl CoA:arylamine N-acetyltransferase (EC 2.3.1.5) and hydroxyindole-O-methyltransferase (EC 2.1.1.4) from pineal gland.
    Morton DJ
    Biochem Pharmacol; 1983 Apr; 32(7):1312-4. PubMed ID: 6133520
    [No Abstract]   [Full Text] [Related]  

  • 14. The organochlorine insecticide 1,2,3,4,5,6-hexachlorocyclohexane (lindane) but not 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) augments the nocturnal increase in pineal N-acetyltransferase activity and pineal and serum melatonin levels.
    Attia AM; Mostafa MH; Soliman SA; el-Sebae AH; Nonaka KO; Withyachumnarnkul B; Reiter RJ
    Neurochem Res; 1990 Jul; 15(7):673-80. PubMed ID: 1697652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indoleamine metabolism in the pineal gland of the Chinese hamster, Cricetulus griseus.
    Harumi T; Matsushima S
    Gen Comp Endocrinol; 1998 Jan; 109(1):133-9. PubMed ID: 9446730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in serotonin levels, N-acetyltransferase activity, hydroxyindole-O-methyltransferase activity, and melatonin levels in the pineal gland of the Richardson's ground squirrel in relation to the light-dark cycle.
    Reiter RJ; Hurlbut EC; Esquifino AI; Champney TH; Steger RW
    Neuroendocrinology; 1984 Oct; 39(4):356-60. PubMed ID: 6493447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pineal gland biorhythms: N-acetyltransferase in chickens and rats.
    Binkley S
    Fed Proc; 1976 Oct; 35(12):2347-52. PubMed ID: 786737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin.
    Reiter RJ
    J Cell Biochem; 1993 Apr; 51(4):394-403. PubMed ID: 8098713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melatonin synthesis enzymes in Macaca mulatta: focus on arylalkylamine N-acetyltransferase (EC 2.3.1.87).
    Coon SL; Del Olmo E; Young WS; Klein DC
    J Clin Endocrinol Metab; 2002 Oct; 87(10):4699-706. PubMed ID: 12364461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A circadian oscillator in cultured cells of chicken pineal gland.
    Deguchi T
    Nature; 1979 Nov; 282(5734):94-6. PubMed ID: 503196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.