BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

758 related articles for article (PubMed ID: 22940866)

  • 1. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p.
    Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM
    Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DEAD-box proteins unwind duplexes by local strand separation.
    Yang Q; Del Campo M; Lambowitz AM; Jankowsky E
    Mol Cell; 2007 Oct; 28(2):253-63. PubMed ID: 17964264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro.
    Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular insights into RNA and DNA helicase evolution from the determinants of specificity for a DEAD-box RNA helicase.
    Mallam AL; Sidote DJ; Lambowitz AM
    Elife; 2014 Dec; 3():e04630. PubMed ID: 25497230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of ATP-dependent RNA unwinding by DEAD box proteins.
    Hilbert M; Karow AR; Klostermeier D
    Biol Chem; 2009 Dec; 390(12):1237-50. PubMed ID: 19747077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases.
    Yang Q; Jankowsky E
    Nat Struct Mol Biol; 2006 Nov; 13(11):981-6. PubMed ID: 17072313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1.
    Banroques J; Doère M; Dreyfus M; Linder P; Tanner NK
    J Mol Biol; 2010 Mar; 396(4):949-66. PubMed ID: 20026132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of RNA recognition and activation by innate immune receptor RIG-I.
    Jiang F; Ramanathan A; Miller MT; Tang GQ; Gale M; Patel SS; Marcotrigiano J
    Nature; 2011 Sep; 479(7373):423-7. PubMed ID: 21947008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput genetic identification of functionally important regions of the yeast DEAD-box protein Mss116p.
    Mohr G; Del Campo M; Turner KG; Gilman B; Wolf RZ; Lambowitz AM
    J Mol Biol; 2011 Nov; 413(5):952-72. PubMed ID: 21945532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of unwinding activity of duplex RNA by DbpA, a DEAD box helicase, at single-molecule resolution by atomic force microscopy.
    Henn A; Medalia O; Shi SP; Steinberg M; Franceschi F; Sagi I
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5007-12. PubMed ID: 11296244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding.
    Rudolph MG; Klostermeier D
    Biol Chem; 2015 Aug; 396(8):849-65. PubMed ID: 25720120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding.
    Liu F; Putnam A; Jankowsky E
    Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20209-14. PubMed ID: 19088201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DEAD-box RNA helicase domains exhibit a continuum between complete functional independence and high thermodynamic coupling in nucleotide and RNA duplex recognition.
    Samatanga B; Klostermeier D
    Nucleic Acids Res; 2014; 42(16):10644-54. PubMed ID: 25123660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail.
    Mallam AL; Jarmoskaite I; Tijerina P; Del Campo M; Seifert S; Guo L; Russell R; Lambowitz AM
    Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12254-9. PubMed ID: 21746911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for RNA-duplex unwinding by the DEAD-box helicase DbpA.
    Wurm JP
    RNA; 2023 Sep; 29(9):1339-1354. PubMed ID: 37221012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the Yeast DEAD box protein Mss116p reveals two wedges that crimp RNA.
    Del Campo M; Lambowitz AM
    Mol Cell; 2009 Sep; 35(5):598-609. PubMed ID: 19748356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-guided mutational analysis of a yeast DEAD-box protein involved in mitochondrial RNA splicing.
    Bifano AL; Turk EM; Caprara MG
    J Mol Biol; 2010 May; 398(3):429-43. PubMed ID: 20307546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Division of Labor in an Oligomer of the DEAD-Box RNA Helicase Ded1p.
    Putnam AA; Gao Z; Liu F; Jia H; Yang Q; Jankowsky E
    Mol Cell; 2015 Aug; 59(4):541-52. PubMed ID: 26212457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DEAD-box proteins can completely separate an RNA duplex using a single ATP.
    Chen Y; Potratz JP; Tijerina P; Del Campo M; Lambowitz AM; Russell R
    Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20203-8. PubMed ID: 19088196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autoinhibitory Interdomain Interactions and Subfamily-specific Extensions Redefine the Catalytic Core of the Human DEAD-box Protein DDX3.
    Floor SN; Condon KJ; Sharma D; Jankowsky E; Doudna JA
    J Biol Chem; 2016 Jan; 291(5):2412-21. PubMed ID: 26598523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.