These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
623 related articles for article (PubMed ID: 22940866)
1. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866 [TBL] [Abstract][Full Text] [Related]
2. DEAD-box proteins unwind duplexes by local strand separation. Yang Q; Del Campo M; Lambowitz AM; Jankowsky E Mol Cell; 2007 Oct; 28(2):253-63. PubMed ID: 17964264 [TBL] [Abstract][Full Text] [Related]
3. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186 [TBL] [Abstract][Full Text] [Related]
4. Molecular insights into RNA and DNA helicase evolution from the determinants of specificity for a DEAD-box RNA helicase. Mallam AL; Sidote DJ; Lambowitz AM Elife; 2014 Dec; 3():e04630. PubMed ID: 25497230 [TBL] [Abstract][Full Text] [Related]
5. The mechanism of ATP-dependent RNA unwinding by DEAD box proteins. Hilbert M; Karow AR; Klostermeier D Biol Chem; 2009 Dec; 390(12):1237-50. PubMed ID: 19747077 [TBL] [Abstract][Full Text] [Related]
6. The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Yang Q; Jankowsky E Nat Struct Mol Biol; 2006 Nov; 13(11):981-6. PubMed ID: 17072313 [TBL] [Abstract][Full Text] [Related]
7. Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1. Banroques J; Doère M; Dreyfus M; Linder P; Tanner NK J Mol Biol; 2010 Mar; 396(4):949-66. PubMed ID: 20026132 [TBL] [Abstract][Full Text] [Related]
8. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Jiang F; Ramanathan A; Miller MT; Tang GQ; Gale M; Patel SS; Marcotrigiano J Nature; 2011 Sep; 479(7373):423-7. PubMed ID: 21947008 [TBL] [Abstract][Full Text] [Related]
9. High-throughput genetic identification of functionally important regions of the yeast DEAD-box protein Mss116p. Mohr G; Del Campo M; Turner KG; Gilman B; Wolf RZ; Lambowitz AM J Mol Biol; 2011 Nov; 413(5):952-72. PubMed ID: 21945532 [TBL] [Abstract][Full Text] [Related]
10. Visualization of unwinding activity of duplex RNA by DbpA, a DEAD box helicase, at single-molecule resolution by atomic force microscopy. Henn A; Medalia O; Shi SP; Steinberg M; Franceschi F; Sagi I Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5007-12. PubMed ID: 11296244 [TBL] [Abstract][Full Text] [Related]
11. When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding. Rudolph MG; Klostermeier D Biol Chem; 2015 Aug; 396(8):849-65. PubMed ID: 25720120 [TBL] [Abstract][Full Text] [Related]
12. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Liu F; Putnam A; Jankowsky E Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20209-14. PubMed ID: 19088201 [TBL] [Abstract][Full Text] [Related]
13. DEAD-box RNA helicase domains exhibit a continuum between complete functional independence and high thermodynamic coupling in nucleotide and RNA duplex recognition. Samatanga B; Klostermeier D Nucleic Acids Res; 2014; 42(16):10644-54. PubMed ID: 25123660 [TBL] [Abstract][Full Text] [Related]
14. Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail. Mallam AL; Jarmoskaite I; Tijerina P; Del Campo M; Seifert S; Guo L; Russell R; Lambowitz AM Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12254-9. PubMed ID: 21746911 [TBL] [Abstract][Full Text] [Related]
15. Structure of the Yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. Del Campo M; Lambowitz AM Mol Cell; 2009 Sep; 35(5):598-609. PubMed ID: 19748356 [TBL] [Abstract][Full Text] [Related]
16. Structure-guided mutational analysis of a yeast DEAD-box protein involved in mitochondrial RNA splicing. Bifano AL; Turk EM; Caprara MG J Mol Biol; 2010 May; 398(3):429-43. PubMed ID: 20307546 [TBL] [Abstract][Full Text] [Related]
17. Division of Labor in an Oligomer of the DEAD-Box RNA Helicase Ded1p. Putnam AA; Gao Z; Liu F; Jia H; Yang Q; Jankowsky E Mol Cell; 2015 Aug; 59(4):541-52. PubMed ID: 26212457 [TBL] [Abstract][Full Text] [Related]
18. DEAD-box proteins can completely separate an RNA duplex using a single ATP. Chen Y; Potratz JP; Tijerina P; Del Campo M; Lambowitz AM; Russell R Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20203-8. PubMed ID: 19088196 [TBL] [Abstract][Full Text] [Related]
19. Autoinhibitory Interdomain Interactions and Subfamily-specific Extensions Redefine the Catalytic Core of the Human DEAD-box Protein DDX3. Floor SN; Condon KJ; Sharma D; Jankowsky E; Doudna JA J Biol Chem; 2016 Jan; 291(5):2412-21. PubMed ID: 26598523 [TBL] [Abstract][Full Text] [Related]
20. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones. Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]