These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 22940950)

  • 1. Development of two-color laser system for high-resolution polarization spectroscopy measurements of atomic hydrogen.
    Bhuiyan AH; Satija A; Naik SV; Lucht RP
    Opt Lett; 2012 Sep; 37(17):3564-6. PubMed ID: 22940950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy.
    Kulatilaka WD; Lucht RP; Roy S; Gord JR; Settersten TB
    Appl Opt; 2007 Jul; 46(19):3921-7. PubMed ID: 17571128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical effects in 243-nm two-photon excitation of atomic hydrogen in flames.
    Goldsmith JE
    Appl Opt; 1989 Mar; 28(6):1206-13. PubMed ID: 20548641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral measurement of the caesium D(2) line with a tunable heterodyne interferometer.
    Spani Molella L; Rinkleff RH; Danzmann K
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Apr; 63(5):987-93. PubMed ID: 16504573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The multicolour three-photon resonant ionization spectrum studies in uranium atom].
    Shi G; Du H; Wang L; Jin C; Wang W; Zhou D
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Feb; 20(1):5-8. PubMed ID: 12953439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of tunable narrow bandwidth nanosecond pulses in the deep ultraviolet for efficient optical pumping and high resolution spectroscopy.
    Velarde L; Engelhart DP; Matsiev D; LaRue J; Auerbach DJ; Wodtke AM
    Rev Sci Instrum; 2010 Jun; 81(6):063106. PubMed ID: 20590224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical effects in two-photon-excited fluorescence detection of atomic oxygen in flames.
    Goldsmith JE
    Appl Opt; 1987 Sep; 26(17):3566-72. PubMed ID: 20490104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A narrow-band injection-seeded pulsed titanium:sapphire oscillator-amplifier system with on-line chirp analysis for high-resolution spectroscopy.
    Hannemann S; van Duijn EJ; Ubachs W
    Rev Sci Instrum; 2007 Oct; 78(10):103102. PubMed ID: 17979401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy.
    Dudovich N; Oron D; Silberberg Y
    Nature; 2002 Aug; 418(6897):512-4. PubMed ID: 12152073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute concentration measurements of atomic hydrogen in subatmospheric premixed H(2)/O(2)/N(2) flat flames with photoionization controlled-loss spectroscopy.
    Salmon JT; Laurendeau NM
    Appl Opt; 1987 Jul; 26(14):2881-91. PubMed ID: 20489977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short pulse laser train for laser plasma interaction experiments.
    Kline JL; Shimada T; Johnson RP; Montgomery DS; Hegelich BM; Esquibel DM; Flippo KA; Gonzales RP; Hurry TR; Reid SL
    Rev Sci Instrum; 2007 Aug; 78(8):083501. PubMed ID: 17764320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of atomic hydrogen by two-color laser-induced grating spectroscopy.
    Gray JA; Goldsmith JE; Trebino R
    Opt Lett; 1993 Mar; 18(6):444-6. PubMed ID: 19802163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering.
    Meyer TR; Roy S; Gord JR
    Appl Spectrosc; 2007 Nov; 61(11):1135-40. PubMed ID: 18028690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doppler-free two-photon-excited fluorescence spectroscopy of atomic hydrogen in flames.
    Goldsmith JE; Rahn LA
    Opt Lett; 1990 Jul; 15(14):814-6. PubMed ID: 19768088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser diagnostics of welding plasma by polarization spectroscopy.
    Lucas O; Alwahabi ZT; Linton V; Meeuwissen K
    Appl Spectrosc; 2007 May; 61(5):565-9. PubMed ID: 17555627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passion for precision.
    Hänsch TW
    Chemphyschem; 2006 Jun; 7(6):1170-87. PubMed ID: 16637090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser wavelength measurement with a Fourier transform wavemeter.
    Junttila ML; Stahlberg B
    Appl Opt; 1990 Aug; 29(24):3510-6. PubMed ID: 20567445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate-equation model for quantitative concentration measurements in flames with picosecond pump-probe absorption spectroscopy.
    Fiechtner GJ; King GB; Laurendeau NM
    Appl Opt; 1995 Feb; 34(6):1108-16. PubMed ID: 21037640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging.
    Kulatilaka WD; Stauffer HU; Gord JR; Roy S
    Opt Lett; 2011 Nov; 36(21):4182-4. PubMed ID: 22048358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of atomic sodium in flames by asynchronous optical sampling: theory and experiment.
    Fiechtner GJ; King GB; Laurendeau NM; Lytle FE
    Appl Opt; 1992 May; 31(15):2849-64. PubMed ID: 20725220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.