These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 22940979)

  • 1. Nanoscale avalanche photodiode with self-quenching and ultrahigh ultraviolet/visible rejection ratio.
    Hong R; Zhou Y; Xie Y; Chen X; Zhang Z; Wang KL; Wu Z
    Opt Lett; 2012 Sep; 37(17):3651-3. PubMed ID: 22940979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization Strategy of 4H-SiC Separated Absorption Charge and Multiplication Avalanche Photodiode Structure for High Ultraviolet Detection Efficiency.
    Kou J; Tian K; Chu C; Zhang Y; Zhou X; Feng Z; Zhang ZH
    Nanoscale Res Lett; 2019 Dec; 14(1):396. PubMed ID: 31889233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separate absorption and multiplication solar-blind photodiodes based on p-NiO/MgO/n-ZnO heterostructure.
    Hwang JD; Wu MS
    Nanotechnology; 2021 Jan; 32(1):015503. PubMed ID: 32947275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice.
    Li J; Dehzangi A; Brown G; Razeghi M
    Sci Rep; 2021 Mar; 11(1):7104. PubMed ID: 33782500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.
    Resetar T; De Munck K; Haspeslagh L; Rosmeulen M; Süss A; Puers R; Van Hoof C
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27537882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar-Blind Photodetector with High Avalanche Gains and Bias-Tunable Detecting Functionality Based on Metastable Phase α-Ga
    Chen X; Xu Y; Zhou D; Yang S; Ren FF; Lu H; Tang K; Gu S; Zhang R; Zheng Y; Ye J
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36997-37005. PubMed ID: 28975779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Impact Ionization Coefficient of ZnO Based on a p-Si/i-ZnO/n-AZO Avalanche Photodiode.
    Li G; Zhao X; Jia X; Li S; He Y
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelength and temperature dependence of RAPD aser detectors.
    Su YK; Chang CY; Wu TS; Houng MP; Wang YH
    Appl Opt; 1981 Dec; 20(24):4255-8. PubMed ID: 20372361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 128-pixel arrays of 4H-SiC UV APD with dual-frequency PECVD SiN
    Zhou X; Tan X; Lv Y; Wang Y; Li J; Liang S; Zhang ZH; Feng Z; Cai S
    Opt Express; 2020 Sep; 28(20):29245-29252. PubMed ID: 33114828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin 3D multiplication regions in plasmonically enhanced nanopillar avalanche detectors.
    Senanayake P; Hung CH; Farrell A; Ramirez DA; Shapiro J; Li CK; Wu YR; Hayat MM; Huffaker DL
    Nano Lett; 2012 Dec; 12(12):6448-52. PubMed ID: 23206195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of multiplication layers on dark current components of InGaAs/InP avalanche photodiodes.
    Liu A; Zhang J; Xing H; Yang Y
    Appl Opt; 2019 Jul; 58(19):5339-5346. PubMed ID: 31503634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes.
    Farrell AC; Senanayake P; Hung CH; El-Howayek G; Rajagopal A; Currie M; Hayat MM; Huffaker DL
    Sci Rep; 2015 Dec; 5():17580. PubMed ID: 26627932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Al
    Jones AH; Yuan Y; Ren M; Maddox SJ; Bank SR; Campbell JC
    Opt Express; 2017 Oct; 25(20):24340-24345. PubMed ID: 29041378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High temperature and wavelength dependence of avalanche gain of AlAsSb avalanche photodiodes.
    Sandall IC; Xie S; Xie J; Tan CH
    Opt Lett; 2011 Nov; 36(21):4287-9. PubMed ID: 22048393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant normal-incidence separate-absorption-charge-multiplication Ge/Si avalanche photodiodes.
    Dai D; Chen HW; Bowers JE; Kang Y; Morse M; Paniccia MJ
    Opt Express; 2009 Sep; 17(19):16549-57. PubMed ID: 19770870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection.
    Duan N; Liow TY; Lim AE; Ding L; Lo GQ
    Opt Express; 2012 May; 20(10):11031-6. PubMed ID: 22565725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of InGaAs/InAlAs Avalanche Photodiodes.
    Chen J; Zhang Z; Zhu M; Xu J; Li X
    Nanoscale Res Lett; 2017 Dec; 12(1):33. PubMed ID: 28091945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption.
    Xiao L; Yang X; Duan P; Xu H; Chen X; Hu X; Peng Y; Xu X
    Appl Opt; 2018 Apr; 57(11):2804-2808. PubMed ID: 29714282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thin Al
    Zhou X; Tan CH; Zhang S; Moreno M; Xie S; Abdullah S; Ng JS
    R Soc Open Sci; 2017 May; 4(5):170071. PubMed ID: 28573013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage breakdown follower avoids hard thermal constraints in a Geiger mode avalanche photodiode.
    Viterbini M; Nozzoli S; Poli M; Adriani A; Nozzoli F; Ottaviano A; Ponzo S
    Appl Opt; 1996 Sep; 35(27):5345-7. PubMed ID: 21127529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.