These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 22941596)
1. Electrophoretic mobility shift assays for protein-DNA complexes involved in DNA repair. Tsai C; Smider V; Hwang BJ; Chu G Methods Mol Biol; 2012; 920():53-78. PubMed ID: 22941596 [TBL] [Abstract][Full Text] [Related]
2. Electrophoretic mobility shift assays to study protein binding to damaged DNA. Smider V; Hwang BJ; Chu G Methods Mol Biol; 2006; 314():323-44. PubMed ID: 16673891 [TBL] [Abstract][Full Text] [Related]
3. Principles and problems of the electrophoretic mobility shift assay. Holden NS; Tacon CE J Pharmacol Toxicol Methods; 2011; 63(1):7-14. PubMed ID: 20348003 [TBL] [Abstract][Full Text] [Related]
4. Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV. Koch CA; Agyei R; Galicia S; Metalnikov P; O'Donnell P; Starostine A; Weinfeld M; Durocher D EMBO J; 2004 Oct; 23(19):3874-85. PubMed ID: 15385968 [TBL] [Abstract][Full Text] [Related]
5. Human polynucleotide kinase participates in repair of DNA double-strand breaks by nonhomologous end joining but not homologous recombination. Karimi-Busheri F; Rasouli-Nia A; Allalunis-Turner J; Weinfeld M Cancer Res; 2007 Jul; 67(14):6619-25. PubMed ID: 17638872 [TBL] [Abstract][Full Text] [Related]
6. Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. Batty D; Rapic'-Otrin V; Levine AS; Wood RD J Mol Biol; 2000 Jul; 300(2):275-90. PubMed ID: 10873465 [TBL] [Abstract][Full Text] [Related]
7. APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation. Macrae CJ; McCulloch RD; Ylanko J; Durocher D; Koch CA DNA Repair (Amst); 2008 Feb; 7(2):292-302. PubMed ID: 18077224 [TBL] [Abstract][Full Text] [Related]
8. Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. Chen L; Trujillo K; Sung P; Tomkinson AE J Biol Chem; 2000 Aug; 275(34):26196-205. PubMed ID: 10854421 [TBL] [Abstract][Full Text] [Related]
9. Involvement of polynucleotide kinase in a poly(ADP-ribose) polymerase-1-dependent DNA double-strand breaks rejoining pathway. Audebert M; Salles B; Weinfeld M; Calsou P J Mol Biol; 2006 Feb; 356(2):257-65. PubMed ID: 16364363 [TBL] [Abstract][Full Text] [Related]
10. Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. Kusumoto R; Dawut L; Marchetti C; Wan Lee J; Vindigni A; Ramsden D; Bohr VA Biochemistry; 2008 Jul; 47(28):7548-56. PubMed ID: 18558713 [TBL] [Abstract][Full Text] [Related]
11. Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. Calsou P; Delteil C; Frit P; Drouet J; Salles B J Mol Biol; 2003 Feb; 326(1):93-103. PubMed ID: 12547193 [TBL] [Abstract][Full Text] [Related]
12. Interactions of DNA and Proteins: Electrophoretic Mobility Shift Assay in Asthma. García-Solaesa V; Sanz-Lozano CS Methods Mol Biol; 2016; 1434():91-105. PubMed ID: 27300533 [TBL] [Abstract][Full Text] [Related]
13. Biochemical evidence for Ku-independent backup pathways of NHEJ. Wang H; Perrault AR; Takeda Y; Qin W; Wang H; Iliakis G Nucleic Acids Res; 2003 Sep; 31(18):5377-88. PubMed ID: 12954774 [TBL] [Abstract][Full Text] [Related]
14. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Whitehouse CJ; Taylor RM; Thistlethwaite A; Zhang H; Karimi-Busheri F; Lasko DD; Weinfeld M; Caldecott KW Cell; 2001 Jan; 104(1):107-17. PubMed ID: 11163244 [TBL] [Abstract][Full Text] [Related]
15. DNA-dependent protein kinase and XRCC4-DNA ligase IV mobilization in the cell in response to DNA double strand breaks. Drouet J; Delteil C; Lefrançois J; Concannon P; Salles B; Calsou P J Biol Chem; 2005 Feb; 280(8):7060-9. PubMed ID: 15520013 [TBL] [Abstract][Full Text] [Related]
16. Detection of damage-recognition proteins from human lymphocytes. Lanuszewska J; Cudak A; Rzeszowska-Wolny J; Widłak P Acta Biochim Pol; 2000; 47(2):443-50. PubMed ID: 11051209 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a Ku86 variant protein that results in altered DNA binding and diminished DNA-dependent protein kinase activity. Han Z; Johnston C; Reeves WH; Carter T; Wyche JH; Hendrickson EA J Biol Chem; 1996 Jun; 271(24):14098-104. PubMed ID: 8662896 [TBL] [Abstract][Full Text] [Related]
18. Human Ku autoantigen binds cisplatin-damaged DNA but fails to stimulate human DNA-activated protein kinase. Turchi JJ; Henkels K J Biol Chem; 1996 Jun; 271(23):13861-7. PubMed ID: 8662830 [TBL] [Abstract][Full Text] [Related]
19. Shift-Western Blotting: Separate Analysis of Protein and DNA from Protein-DNA Complexes. Harbers M Methods Mol Biol; 2015; 1312():355-73. PubMed ID: 26044017 [TBL] [Abstract][Full Text] [Related]
20. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. Moser J; Volker M; Kool H; Alekseev S; Vrieling H; Yasui A; van Zeeland AA; Mullenders LH DNA Repair (Amst); 2005 May; 4(5):571-82. PubMed ID: 15811629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]