These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22941621)

  • 1. Live cell microscopy of DNA damage response in Saccharomyces cerevisiae.
    Silva S; Gallina I; Eckert-Boulet N; Lisby M
    Methods Mol Biol; 2012; 920():433-43. PubMed ID: 22941621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-Deoxy-D-glucose induced modulation of DNA damage repair, survival, mutagenesis and recombinogenesis in 8-MOP+UVA treated yeast.
    Bala M; Jain V
    Indian J Biochem Biophys; 1997 Dec; 34(6):483-93. PubMed ID: 9594429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA homology and chromosome stability: a sensitive yeast genetic system for identifying double-stranded DNA damage.
    Resnick MA; Nilsson-Tillgren T
    Prog Clin Biol Res; 1990; 340B():363-9. PubMed ID: 2203015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription.
    Aboussekhra A; Vialard JE; Morrison DE; de la Torre-Ruiz MA; Cernáková L; Fabre F; Lowndes NF
    EMBO J; 1996 Aug; 15(15):3912-22. PubMed ID: 8670896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of rDNA stability by sumoylation.
    Eckert-Boulet N; Lisby M
    DNA Repair (Amst); 2009 Apr; 8(4):507-16. PubMed ID: 19261548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual cell cycle checkpoints sensitive to chromosome replication and DNA damage in the budding yeast Saccharomyces cerevisiae.
    Weinert TA
    Radiat Res; 1992 Nov; 132(2):141-3. PubMed ID: 1438694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of checkpoint responses to DNA damage in Saccharomyces cerevisiae: basic protocols.
    Pabla R; Pawar V; Zhang H; Siede W
    Methods Enzymol; 2006; 409():101-17. PubMed ID: 16793397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre.
    Lisby M; Mortensen UH; Rothstein R
    Nat Cell Biol; 2003 Jun; 5(6):572-7. PubMed ID: 12766777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Molecular-genetic analysis of dual-stranded DNA break repair in saccharomyces yeasts].
    Glazer VM; Glazunov AV
    Genetika; 1999 Nov; 35(11):1449-69. PubMed ID: 10624571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abasic sites linked to dUTP incorporation in DNA are a major cause of spontaneous mutations in absence of base excision repair and Rad17-Mec3-Ddc1 (9-1-1) DNA damage checkpoint clamp in Saccharomyces cerevisiae.
    Collura A; Kemp PA; Boiteux S
    DNA Repair (Amst); 2012 Mar; 11(3):294-303. PubMed ID: 22226374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA lesions that signal the induction of radioresistance and DNA repair in yeast.
    Boreham DR; Mitchel RE
    Radiat Res; 1991 Oct; 128(1):19-28. PubMed ID: 1924725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DSB repair: the yeast paradigm.
    Aylon Y; Kupiec M
    DNA Repair (Amst); 2004; 3(8-9):797-815. PubMed ID: 15279765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae.
    Jessop L; Allers T; Lichten M
    Genetics; 2005 Mar; 169(3):1353-67. PubMed ID: 15654098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative DNA damage and repair measurement with the yeast comet assay.
    Oliveira R; Johansson B
    Methods Mol Biol; 2012; 920():101-9. PubMed ID: 22941599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae.
    Mániková D; Vlasáková D; Loduhová J; Letavayová L; Vigasová D; Krascsenitsová E; Vlcková V; Brozmanová J; Chovanec M
    Mutagenesis; 2010 Mar; 25(2):155-62. PubMed ID: 19955329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle.
    Aylon Y; Liefshitz B; Kupiec M
    EMBO J; 2004 Dec; 23(24):4868-75. PubMed ID: 15549137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.
    Letavayová L; Marková E; Hermanská K; Vlcková V; Vlasáková D; Chovanec M; Brozmanová J
    DNA Repair (Amst); 2006 May; 5(5):602-10. PubMed ID: 16515894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-lapse fluorescence microscopy of Saccharomyces cerevisiae in meiosis.
    Dresser ME
    Methods Mol Biol; 2009; 558():65-79. PubMed ID: 19685319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple pathways cooperate to facilitate DNA replication fork progression through alkylated DNA.
    Vázquez MV; Rojas V; Tercero JA
    DNA Repair (Amst); 2008 Oct; 7(10):1693-704. PubMed ID: 18640290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-homologous end-joining factors of Saccharomyces cerevisiae.
    Dudásová Z; Dudás A; Chovanec M
    FEMS Microbiol Rev; 2004 Nov; 28(5):581-601. PubMed ID: 15539075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.