BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22941770)

  • 1. An improved algorithm for outbreak detection in multiple surveillance systems.
    Noufaily A; Enki DG; Farrington P; Garthwaite P; Andrews N; Charlett A
    Stat Med; 2013 Mar; 32(7):1206-22. PubMed ID: 22941770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems.
    Enki DG; Garthwaite PH; Farrington CP; Noufaily A; Andrews NJ; Charlett A
    PLoS One; 2016; 11(8):e0160759. PubMed ID: 27513749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation and comparison of statistical methods for early temporal detection of outbreaks: A simulation-based study.
    Bédubourg G; Le Strat Y
    PLoS One; 2017; 12(7):e0181227. PubMed ID: 28715489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidemic features affecting the performance of outbreak detection algorithms.
    Kuang J; Yang WZ; Zhou DL; Li ZJ; Lan YJ
    BMC Public Health; 2012 Jun; 12():418. PubMed ID: 22682110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Syndromic surveillance: STL for modeling, visualizing, and monitoring disease counts.
    Hafen RP; Anderson DE; Cleveland WS; Maciejewski R; Ebert DS; Abusalah A; Yakout M; Ouzzani M; Grannis SJ
    BMC Med Inform Decis Mak; 2009 Apr; 9():21. PubMed ID: 19383138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A statistical algorithm for outbreak detection in multisite settings: an application to sick leave monitoring.
    Duchemin T; Noufaily A; Hocine MN
    Bioinform Adv; 2023; 3(1):vbad079. PubMed ID: 37521307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated biosurveillance data from England and Wales, 1991-2011.
    Enki DG; Noufaily A; Garthwaite PH; Andrews NJ; Charlett A; Lane C; Farrington CP
    Emerg Infect Dis; 2013 Jan; 19(1):35-42. PubMed ID: 23260848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation and comparison of three commonly used statistical models for automatic detection of outbreaks in epidemiological data of communicable diseases.
    Rolfhamre P; Ekdahl K
    Epidemiol Infect; 2006 Aug; 134(4):863-71. PubMed ID: 16371181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the determinants of outbreak detection performance through simulation and machine learning.
    Jafarpour N; Izadi M; Precup D; Buckeridge DL
    J Biomed Inform; 2015 Feb; 53():180-7. PubMed ID: 25445482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adapting Syndromic Surveillance Baselines After Public Health Interventions.
    Morbey RA; Elliot AJ; Smith GE; Charlett A
    Public Health Rep; 2020; 135(6):737-745. PubMed ID: 33026959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An empirical comparison of spatial scan statistics for outbreak detection.
    Neill DB
    Int J Health Geogr; 2009 Apr; 8():20. PubMed ID: 19371431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of statistical algorithms for daily syndromic surveillance aberration detection.
    Noufaily A; Morbey RA; Colón-González FJ; Elliot AJ; Smith GE; Lake IR; McCarthy N
    Bioinformatics; 2019 Sep; 35(17):3110-3118. PubMed ID: 30689731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multichart Schemes for Detecting Changes in Disease Incidence.
    Engmann GM; Han D
    Comput Math Methods Med; 2020; 2020():7267801. PubMed ID: 32508978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of statistical process control methods for regional surgical site infection surveillance: a 10-year multicentre pilot study.
    Baker AW; Haridy S; Salem J; Ilieş I; Ergai AO; Samareh A; Andrianas N; Benneyan JC; Sexton DJ; Anderson DJ
    BMJ Qual Saf; 2018 Aug; 27(8):600-610. PubMed ID: 29175853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring sick leave data for early detection of influenza outbreaks.
    Duchemin T; Bastard J; Ante-Testard PA; Assab R; Daouda OS; Duval A; Garsi JP; Lounissi R; Nekkab N; Neynaud H; Smith DRM; Dab W; Jean K; Temime L; Hocine MN
    BMC Infect Dis; 2021 Jan; 21(1):52. PubMed ID: 33430793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The comparative performance of wavelet-based outbreak detector, exponential weighted moving average, and Poisson regression-based methods in detection of pertussis outbreaks in Iranian infants: A simulation-based study.
    Alimohamadi Y; Zahraei SM; Karami M; Yaseri M; Lotfizad M; Holakouie-Naieni K
    Pediatr Pulmonol; 2020 Dec; 55(12):3497-3508. PubMed ID: 32827358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Mobile App and Dashboard for Early Detection of Infectious Disease Outbreaks: Development Study.
    Ahn E; Liu N; Parekh T; Patel R; Baldacchino T; Mullavey T; Robinson A; Kim J
    JMIR Public Health Surveill; 2021 Mar; 7(3):e14837. PubMed ID: 33687334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outbreaks of influenza and influenza-like illness in schools in England and Wales, 2005/06.
    Zhao H; Joseph C; Phin N
    Euro Surveill; 2007 May; 12(5):E3-4. PubMed ID: 17991395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online platform for applying space-time scan statistics for prospectively detecting emerging hot spots of dengue fever.
    Chen CC; Teng YC; Lin BC; Fan IC; Chan TC
    Int J Health Geogr; 2016 Nov; 15(1):43. PubMed ID: 27884135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building test data from real outbreaks for evaluating detection algorithms.
    Texier G; Jackson ML; Siwe L; Meynard JB; Deparis X; Chaudet H
    PLoS One; 2017; 12(9):e0183992. PubMed ID: 28863159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.