BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22941856)

  • 1. Direct transfer of subwavelength plasmonic nanostructures on bioactive silk films.
    Lin D; Tao H; Trevino J; Mondia JP; Kaplan DL; Omenetto FG; Dal Negro L
    Adv Mater; 2012 Nov; 24(45):6088-93. PubMed ID: 22941856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer.
    Park J; Choi Y; Lee M; Jeon H; Kim S
    Nanoscale; 2015 Jan; 7(2):426-31. PubMed ID: 25407052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly tunable and fully biocompatible silk nanoplasmonic optical sensor.
    Lee M; Jeon H; Kim S
    Nano Lett; 2015 May; 15(5):3358-63. PubMed ID: 25821994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser implantation of plasmonic nanostructures into glass.
    Henley SJ; Beliatis MJ; Stolojan V; Silva SR
    Nanoscale; 2013 Feb; 5(3):1054-9. PubMed ID: 23254478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications.
    Sannomiya T; Scholder O; Jefimovs K; Hafner C; Dahlin AB
    Small; 2011 Jun; 7(12):1653-63. PubMed ID: 21520499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmission surface plasmon resonance techniques and their potential biosensor applications.
    Lertvachirapaiboon C; Baba A; Ekgasit S; Shinbo K; Kato K; Kaneko F
    Biosens Bioelectron; 2018 Jan; 99():399-415. PubMed ID: 28806670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement.
    Tseng ML; Huang YW; Hsiao MK; Huang HW; Chen HM; Chen YL; Chu CH; Chu NN; He YJ; Chang CM; Lin WC; Huang DW; Chiang HP; Liu RS; Sun G; Tsai DP
    ACS Nano; 2012 Jun; 6(6):5190-7. PubMed ID: 22551343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure.
    Lee KT; Park JH; Kwon SJ; Kwon HK; Kyhm J; Kwak KW; Jang HS; Kim SY; Han JS; Lee SH; Shin DH; Ko H; Han IK; Ju BK; Kwon SH; Ko DH
    Nano Lett; 2015 Apr; 15(4):2491-7. PubMed ID: 25756859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry.
    Vala M; Ertsgaard CT; Wittenberg NJ; Oh SH
    ACS Sens; 2019 Dec; 4(12):3265-3274. PubMed ID: 31762262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-(Un)rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material.
    Ye C; Nikolov SV; Calabrese R; Dindar A; Alexeev A; Kippelen B; Kaplan DL; Tsukruk VV
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8490-3. PubMed ID: 26037165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics.
    Wang C; Yokota T; Someya T
    Chem Rev; 2021 Feb; 121(4):2109-2146. PubMed ID: 33460327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks.
    Vazquez-Mena O; Sannomiya T; Tosun M; Villanueva LG; Savu V; Voros J; Brugger J
    ACS Nano; 2012 Jun; 6(6):5474-81. PubMed ID: 22594808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of surface plasmon resonance nanosensor for the selective determination of erythromycin via molecular imprinted nanoparticles.
    Sari E; Üzek R; Duman M; Denizli A
    Talanta; 2016 Apr; 150():607-14. PubMed ID: 26838449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled plasmonic nanohole arrays.
    Lee SH; Bantz KC; Lindquist NC; Oh SH; Haynes CL
    Langmuir; 2009 Dec; 25(23):13685-93. PubMed ID: 19831350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection.
    Lee J; Takemura K; Park EY
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanohole arrays in chemical analysis: manufacturing methods and applications.
    Masson JF; Murray-Méthot MP; Live LS
    Analyst; 2010 Jul; 135(7):1483-9. PubMed ID: 20358096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk protein based hybrid photonic-plasmonic crystal.
    Kim S; Mitropoulos AN; Spitzberg JD; Kaplan DL; Omenetto FG
    Opt Express; 2013 Apr; 21(7):8897-903. PubMed ID: 23571980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.