These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 22941861)
1. The role of water in the adsorption of oxygenated aromatics on Pt and Pd. Yang J; Dauenhauer PJ; Ramasubramaniam A J Comput Chem; 2013 Jan; 34(1):60-6. PubMed ID: 22941861 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of naphthalene and quinoline on Pt, Pd and Rh: a DFT study. Santarossa G; Iannuzzi M; Vargas A; Baiker A Chemphyschem; 2008 Feb; 9(3):401-13. PubMed ID: 18236490 [TBL] [Abstract][Full Text] [Related]
3. Slab model studies of water adsorption and decomposition on clean and X- (X = C, N and O) contaminated Pd(111) surfaces. Cao Y; Chen ZX Phys Chem Chem Phys; 2007 Feb; 9(6):739-46. PubMed ID: 17268686 [TBL] [Abstract][Full Text] [Related]
4. Tailoring of Pd-Pt bimetallic clusters with high stability for oxygen reduction reaction. Cheng D; Wang W Nanoscale; 2012 Apr; 4(7):2408-15. PubMed ID: 22374435 [TBL] [Abstract][Full Text] [Related]
5. A density functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: I. Molecular and dissociative adsorption. Karhánek D; Bučko T; Hafner J J Phys Condens Matter; 2010 Jul; 22(26):265005. PubMed ID: 21386471 [TBL] [Abstract][Full Text] [Related]
6. Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution. Heinz H; Farmer BL; Pandey RB; Slocik JM; Patnaik SS; Pachter R; Naik RR J Am Chem Soc; 2009 Jul; 131(28):9704-14. PubMed ID: 19552440 [TBL] [Abstract][Full Text] [Related]
7. Chemical speciation of adsorbed glycine on metal surfaces. Han JW; James JN; Sholl DS J Chem Phys; 2011 Jul; 135(3):034703. PubMed ID: 21787019 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys. Siwek H; Lukaszewski M; Czerwiński A Phys Chem Chem Phys; 2008 Jul; 10(25):3752-65. PubMed ID: 18563236 [TBL] [Abstract][Full Text] [Related]
9. First principles investigations of Pd-on-Au nanostructures for trichloroethene catalytic removal from groundwater. Andersin J; Honkala K Phys Chem Chem Phys; 2011 Jan; 13(4):1386-94. PubMed ID: 21152633 [TBL] [Abstract][Full Text] [Related]
10. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. Allian AD; Takanabe K; Fujdala KL; Hao X; Truex TJ; Cai J; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2011 Mar; 133(12):4498-517. PubMed ID: 21366255 [TBL] [Abstract][Full Text] [Related]
11. Successful a priori modeling of CO adsorption on Pt(111) using periodic hybrid density functional theory. Wang Y; de Gironcoli S; Hush NS; Reimers JR J Am Chem Soc; 2007 Aug; 129(34):10402-7. PubMed ID: 17672452 [TBL] [Abstract][Full Text] [Related]
12. Adsorption and dissociation of H2O2 on Pt and Pt-alloy clusters and surfaces. Balbuena PB; Calvo SR; Lamas EJ; Salazar PF; Seminario JM J Phys Chem B; 2006 Sep; 110(35):17452-9. PubMed ID: 16942084 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of lactic acid on chiral Pt surfaces--a density functional theory study. Franke JH; Kosov DS J Chem Phys; 2013 Feb; 138(8):084705. PubMed ID: 23464170 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. Zhou L; Xu J; Liang X; Liu Z J Hazard Mater; 2010 Oct; 182(1-3):518-24. PubMed ID: 20621417 [TBL] [Abstract][Full Text] [Related]
15. Guaiacol hydrodeoxygenation mechanism on Pt(111): insights from density functional theory and linear free energy relations. Lee K; Gu GH; Mullen CA; Boateng AA; Vlachos DG ChemSusChem; 2015 Jan; 8(2):315-22. PubMed ID: 25470789 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of CO on oxygen preadsorbed neutral and charged gas phase Pd(4) clusters: A density functional study. Kalita B; Deka RC J Comput Chem; 2010 Oct; 31(13):2476-82. PubMed ID: 20652989 [TBL] [Abstract][Full Text] [Related]
17. A first-principles investigation of the effect of Pt cluster size on CO and NO oxidation intermediates and energetics. Xu Y; Getman RB; Shelton WA; Schneider WF Phys Chem Chem Phys; 2008 Oct; 10(39):6009-18. PubMed ID: 18825289 [TBL] [Abstract][Full Text] [Related]
18. Effect of Co doping on catalytic activity of small Pt clusters. Dhilip Kumar TJ; Zhou C; Cheng H; Forrey RC; Balakrishnan N J Chem Phys; 2008 Mar; 128(12):124704. PubMed ID: 18376957 [TBL] [Abstract][Full Text] [Related]
19. Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts. Ohta H; Kobayashi H; Hara K; Fukuoka A Chem Commun (Camb); 2011 Nov; 47(44):12209-11. PubMed ID: 21991582 [TBL] [Abstract][Full Text] [Related]
20. First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase. Yoon Y; Rousseau R; Weber RS; Mei D; Lercher JA J Am Chem Soc; 2014 Jul; 136(29):10287-98. PubMed ID: 24987925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]