These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
839 related articles for article (PubMed ID: 22941918)
21. Mg-Zn-Y alloys with long-period stacking ordered structure: in vitro assessments of biodegradation behavior. Zhao X; Shi LL; Xu J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3627-37. PubMed ID: 23910258 [TBL] [Abstract][Full Text] [Related]
22. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications. Sikora-Jasinska M; Mostaed E; Mostaed A; Beanland R; Mantovani D; Vedani M Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1170-1181. PubMed ID: 28531993 [TBL] [Abstract][Full Text] [Related]
23. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Bornapour M; Celikin M; Cerruti M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378 [TBL] [Abstract][Full Text] [Related]
24. Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg-5Zn-0.3Ca alloys. Hofstetter J; Martinelli E; Pogatscher S; Schmutz P; Povoden-Karadeniz E; Weinberg AM; Uggowitzer PJ; Löffler JF Acta Biomater; 2015 Sep; 23():347-353. PubMed ID: 25983315 [TBL] [Abstract][Full Text] [Related]
25. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Liu B; Zheng YF Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126 [TBL] [Abstract][Full Text] [Related]
26. The role of zinc in the biocorrosion behavior of resorbable Mg‒Zn‒Ca alloys. Cihova M; Martinelli E; Schmutz P; Myrissa A; Schäublin R; Weinberg AM; Uggowitzer PJ; Löffler JF Acta Biomater; 2019 Dec; 100():398-414. PubMed ID: 31539653 [TBL] [Abstract][Full Text] [Related]
27. Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. Rettig R; Virtanen S J Biomed Mater Res A; 2008 Apr; 85(1):167-75. PubMed ID: 17688266 [TBL] [Abstract][Full Text] [Related]
28. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Vojtěch D; Kubásek J; Serák J; Novák P Acta Biomater; 2011 Sep; 7(9):3515-22. PubMed ID: 21621017 [TBL] [Abstract][Full Text] [Related]
29. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. Hermawan H; Dubé D; Mantovani D J Biomed Mater Res A; 2010 Apr; 93(1):1-11. PubMed ID: 19437432 [TBL] [Abstract][Full Text] [Related]
30. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Oliveira NT; Guastaldi AC Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926 [TBL] [Abstract][Full Text] [Related]
31. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. Chen Y; Dou J; Yu H; Chen C J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910 [TBL] [Abstract][Full Text] [Related]
32. Preparation of medical Mg-Zn alloys and the effect of different zinc contents on the alloy. Hu Y; Guo X; Qiao Y; Wang X; Lin Q J Mater Sci Mater Med; 2022 Jan; 33(1):9. PubMed ID: 34982233 [TBL] [Abstract][Full Text] [Related]
33. Degradation behavior of Ca-Mg-Zn intermetallic compounds for use as biodegradable implant materials. Hagihara K; Shakudo S; Fujii K; Nakano T Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():285-92. PubMed ID: 25280708 [TBL] [Abstract][Full Text] [Related]
34. Research on an Mg-Zn alloy as a degradable biomaterial. Zhang S; Zhang X; Zhao C; Li J; Song Y; Xie C; Tao H; Zhang Y; He Y; Jiang Y; Bian Y Acta Biomater; 2010 Feb; 6(2):626-40. PubMed ID: 19545650 [TBL] [Abstract][Full Text] [Related]
35. Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution. Mareci D; Bolat G; Izquierdo J; Crimu C; Munteanu C; Antoniac I; Souto RM Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():402-410. PubMed ID: 26706546 [TBL] [Abstract][Full Text] [Related]
36. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments. Törne K; Örnberg A; Weissenrieder J Acta Biomater; 2017 Jan; 48():541-550. PubMed ID: 27780765 [TBL] [Abstract][Full Text] [Related]
37. "Effect of Zn content and aging temperature on the in-vitro properties of heat-treated and Ca/P ceramic-coated Mg-0.5%Ca-x%Zn alloys". Ibrahim H; Luo A; Dean D; Elahinia M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109700. PubMed ID: 31349526 [TBL] [Abstract][Full Text] [Related]
38. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X=Sn, Ga, In) alloys. Kubásek J; Vojtěch D; Lipov J; Ruml T Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2421-32. PubMed ID: 23498278 [TBL] [Abstract][Full Text] [Related]
39. Effects of microstructure transformation on mechanical properties, corrosion behaviors of Mg-Zn-Mn-Ca alloys in simulated body fluid. Zhang Y; Li J; Li J J Mech Behav Biomed Mater; 2018 Apr; 80():246-257. PubMed ID: 29453027 [TBL] [Abstract][Full Text] [Related]
40. Surface Treatment of Zn-Mn-Mg Alloys by Micro-Arc Oxidation in Silicate-Based Solutions with Different NaF Concentrations. Sun S; Ye G; Lu Z; Weng Y; Ma G; Liu J Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361481 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]