These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
839 related articles for article (PubMed ID: 22941918)
41. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Li HF; Xie XH; Zheng YF; Cong Y; Zhou FY; Qiu KJ; Wang X; Chen SH; Huang L; Tian L; Qin L Sci Rep; 2015 May; 5():10719. PubMed ID: 26023878 [TBL] [Abstract][Full Text] [Related]
42. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys. Lu Y; Bradshaw AR; Chiu YL; Jones IP Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():480-6. PubMed ID: 25579949 [TBL] [Abstract][Full Text] [Related]
43. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Xin Y; Huo K; Tao H; Tang G; Chu PK Acta Biomater; 2008 Nov; 4(6):2008-15. PubMed ID: 18571486 [TBL] [Abstract][Full Text] [Related]
44. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg-Mn-Zn-Nd alloys for biomedical applications. Zhou YL; Li Y; Luo DM; Ding Y; Hodgson P Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():93-100. PubMed ID: 25686931 [TBL] [Abstract][Full Text] [Related]
45. In vitro and in vivo corrosion measurements of Mg-6Zn alloys in the bile. Chen Y; Yan J; Wang Z; Yu S; Wang X; Yuan Z; Zhang X; Zhao C; Zheng Q Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():116-23. PubMed ID: 25063100 [TBL] [Abstract][Full Text] [Related]
46. In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applications. Bian D; Deng J; Li N; Chu X; Liu Y; Li W; Cai H; Xiu P; Zhang Y; Guan Z; Zheng Y; Kou Y; Jiang B; Chen R ACS Appl Mater Interfaces; 2018 Feb; 10(5):4394-4408. PubMed ID: 29310434 [TBL] [Abstract][Full Text] [Related]
47. Corrosion mechanism of the as-cast and as-extruded biodegradable Mg-3.0Gd-2.7Zn-0.4Zr-0.1Mn alloys. Gui Z; Kang Z; Li Y Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():831-840. PubMed ID: 30606597 [TBL] [Abstract][Full Text] [Related]
48. Effect of zinc content on the microstructure, in vitro bioactivity, and corrosion behavior of the microarc oxidized Mg-xZn-0.6Ca (x = 3.0, 4.5, 6.0) alloy. Wang J; Pan Y; Wang W; Cui H; Feng R; Cui X; Gong B; Zhao X; Hou N Biointerphases; 2021 Feb; 16(1):011007. PubMed ID: 33706520 [TBL] [Abstract][Full Text] [Related]
49. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729 [TBL] [Abstract][Full Text] [Related]
50. Effects of Zn-In-Sn elements on the electric properties of magnesium alloy anode materials. Yu Z; Ju D; Zhao H; Hu X J Environ Sci (China); 2011 Jun; 23 Suppl():S95-9. PubMed ID: 25084604 [TBL] [Abstract][Full Text] [Related]
51. In vitro degradation of ZnO flowered coated Zn-Mg alloys in simulated physiological conditions. Alves MM; Prosek T; Santos CF; Montemor MF Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):112-120. PubMed ID: 27770870 [TBL] [Abstract][Full Text] [Related]
52. In vitro and in vivo assessment of squeeze-cast Mg-Zn-Ca-Mn alloys for biomedical applications. Cho DH; Avey T; Nam KH; Dean D; Luo AA Acta Biomater; 2022 Sep; 150():442-455. PubMed ID: 35914693 [TBL] [Abstract][Full Text] [Related]
53. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification. Zhao C; Pan F; Zhao S; Pan H; Song K; Tang A Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():245-51. PubMed ID: 26046288 [TBL] [Abstract][Full Text] [Related]
54. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities. Bakhsheshi-Rad HR; Hamzah E; Low HT; Kasiri-Asgarani M; Farahany S; Akbari E; Cho MH Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():215-219. PubMed ID: 28183601 [TBL] [Abstract][Full Text] [Related]
55. Phosphating treatment and corrosion properties of Mg-Mn-Zn alloy for biomedical application. Xu L; Zhang E; Yang K J Mater Sci Mater Med; 2009 Apr; 20(4):859-67. PubMed ID: 19034618 [TBL] [Abstract][Full Text] [Related]
56. The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of β-TCP/Zn-Mg composites. Pan C; Sun X; Xu G; Su Y; Liu D Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110397. PubMed ID: 31923980 [TBL] [Abstract][Full Text] [Related]
57. A mechanistic study of in vitro degradation of magnesium alloy using electrochemical techniques. Bobby Kannan M; Singh RK J Biomed Mater Res A; 2010 Jun; 93(3):1050-5. PubMed ID: 19753621 [TBL] [Abstract][Full Text] [Related]
58. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. Rettig R; Virtanen S J Biomed Mater Res A; 2009 Feb; 88(2):359-69. PubMed ID: 18286623 [TBL] [Abstract][Full Text] [Related]
59. Influence of SaOS-2 cells on corrosion behavior of cast Mg-2.0Zn0.98Mn magnesium alloy. Witecka A; Yamamoto A; Święszkowski W Colloids Surf B Biointerfaces; 2017 Feb; 150():288-296. PubMed ID: 27810129 [TBL] [Abstract][Full Text] [Related]
60. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios. Zhang X; Yuan G; Niu J; Fu P; Ding W J Mech Behav Biomed Mater; 2012 May; 9():153-62. PubMed ID: 22498293 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]