These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22941923)

  • 1. Effects of temporally varying inlet conditions on flow and particle deposition in the small bronchial tubes.
    Soni B; Thompson D
    Int J Numer Method Biomed Eng; 2012 Sep; 28(9):915-36. PubMed ID: 22941923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing particle/flow structure interactions in the small bronchial tubes.
    Soni B; Thompson D; Machiraju R
    IEEE Trans Vis Comput Graph; 2008; 14(6):1412-9. PubMed ID: 18988991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Simulation research on the movement and deposition of inhalational particles in the human respiratory tract].
    Yin JJ; Ning Z; Fu J; Lu XZ
    Huan Jing Ke Xue; 2010 Jul; 31(7):1476-82. PubMed ID: 20825013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsteady-state airflow and particle deposition in a three-generation human lung geometry.
    Nazridoust K; Asgharian B
    Inhal Toxicol; 2008 Apr; 20(6):595-610. PubMed ID: 18444012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of bronchial mucociliary clearance of insoluble particles by computational fluid and particle dynamics methods.
    Farkas A; Szöke I
    Inhal Toxicol; 2013 Aug; 25(10):593-605. PubMed ID: 23937417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational analysis of micron-particle deposition in a human triple bifurcation airway model.
    Zhang Z; Kleinstreuer C; Kim CS
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):135-47. PubMed ID: 12186723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of asymmetric branch flow rates on aerosol deposition in bifurcating airways.
    Zhang Z; Kleinstreuer C; Kim CS
    J Med Eng Technol; 2000; 24(5):192-202. PubMed ID: 11204242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of curved inlet tubes on air flow and particle deposition in bifurcating lung models.
    Zhang Z; Kleinstreuer C; Kim CS
    J Biomech; 2001 May; 34(5):659-69. PubMed ID: 11311707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways.
    Kleinstreuer C; Zhang Z
    J Biomech Eng; 2009 Feb; 131(2):021007. PubMed ID: 19102566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of computational fluid dynamics in respiratory medicine.
    Fernández Tena A; Casan Clarà P
    Arch Bronconeumol; 2015 Jun; 51(6):293-8. PubMed ID: 25618456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow visualization through particle image velocimetry in realistic model of rhesus monkey's upper airway.
    Kim JW; Phuong NL; Aramaki SI; Ito K
    Respir Physiol Neurobiol; 2018 May; 251():16-27. PubMed ID: 29438809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional model of tracheobronchial particle distribution during mucociliary clearance in the human respiratory tract.
    Sturm R
    Z Med Phys; 2013 May; 23(2):111-9. PubMed ID: 23477913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns.
    Kadota K; Inoue N; Matsunaga Y; Takemiya T; Kubo K; Imano H; Uchiyama H; Tozuka Y
    J Pharm Pharmacol; 2020 Jan; 72(1):17-28. PubMed ID: 31713883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of particle inlet distributions on deposition in a triple bifurcation lung airway model.
    Zhang Z; Kleinstreuer C
    J Aerosol Med; 2001; 14(1):13-29. PubMed ID: 11495482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational investigation of flow characteristics and particle deposition patterns in a realistic human airway model under different breathing conditions.
    Liu H; Ma S; Hu T; Ma D
    Respir Physiol Neurobiol; 2023 Aug; 314():104085. PubMed ID: 37276915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Numerical study on inspiratory flows in two and three generation bronchi of human lung airways].
    Zhang C; Wen S; Liu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):748-52. PubMed ID: 17002099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics.
    van Ertbruggen C; Hirsch C; Paiva M
    J Appl Physiol (1985); 2005 Mar; 98(3):970-80. PubMed ID: 15501925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of heterogeneity of lung structure on particle deposition in the rat lung.
    Hofmann W; Asgharian B; Bergmann R; Anjilvel S; Miller FJ
    Toxicol Sci; 2000 Feb; 53(2):430-7. PubMed ID: 10696791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
    Xi J; Longest PW; Martonen TB
    J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.