These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22941925)

  • 1. Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions.
    Ammar A; Cueto E; Chinesta F
    Int J Numer Method Biomed Eng; 2012 Sep; 28(9):960-73. PubMed ID: 22941925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive aggregation method for the Chemical Master Equation.
    Zhang J; Watson LT; Cao Y
    Int J Comput Biol Drug Des; 2009; 2(2):134-48. PubMed ID: 20090167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting.
    Pájaro M; Alonso AA; Otero-Muras I; Vázquez C
    J Theor Biol; 2017 May; 421():51-70. PubMed ID: 28341132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimensional reduction of the master equation for stochastic chemical networks: The reduced-multiplane method.
    Barzel B; Biham O; Kupferman R; Lipshtat A; Zait A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021117. PubMed ID: 20866785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction and solution of the chemical master equation using time scale separation and finite state projection.
    Peles S; Munsky B; Khammash M
    J Chem Phys; 2006 Nov; 125(20):204104. PubMed ID: 17144687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The finite state projection algorithm for the solution of the chemical master equation.
    Munsky B; Khammash M
    J Chem Phys; 2006 Jan; 124(4):044104. PubMed ID: 16460146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solving the chemical master equation by a fast adaptive finite state projection based on the stochastic simulation algorithm.
    Sidje RB; Vo HD
    Math Biosci; 2015 Nov; 269():10-6. PubMed ID: 26319118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.
    Erban R; Kevrekidis IG; Adalsteinsson D; Elston TC
    J Chem Phys; 2006 Feb; 124(8):084106. PubMed ID: 16512707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepCME: A deep learning framework for computing solution statistics of the chemical master equation.
    Gupta A; Schwab C; Khammash M
    PLoS Comput Biol; 2021 Dec; 17(12):e1009623. PubMed ID: 34879062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical solution of the chemical master equation uniqueness and stability of the stationary distribution for chemical networks, and mRNA bursting in a gene network with negative feedback regulation.
    Zeron ES; Santillán M
    Methods Enzymol; 2011; 487():147-69. PubMed ID: 21187225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct solution of the Chemical Master Equation using quantized tensor trains.
    Kazeev V; Khammash M; Nip M; Schwab C
    PLoS Comput Biol; 2014 Mar; 10(3):e1003359. PubMed ID: 24626049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic hybrid models of gene regulatory networks - A PDE approach.
    Kurasov P; Lück A; Mugnolo D; Wolf V
    Math Biosci; 2018 Nov; 305():170-177. PubMed ID: 30244015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic modeling of cellular networks.
    Stewart-Ornstein J; El-Samad H
    Methods Cell Biol; 2012; 110():111-37. PubMed ID: 22482947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient dynamics of reduced-order models of genetic regulatory networks.
    Pal R; Bhattacharya S
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1230-44. PubMed ID: 22411891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks.
    Ching WK; Zhang S; Ng MK; Akutsu T
    Bioinformatics; 2007 Jun; 23(12):1511-8. PubMed ID: 17463027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of stochastic strategies in bacterial competence: a master equation approach.
    Dandach SH; Khammash M
    PLoS Comput Biol; 2010 Nov; 6(11):e1000985. PubMed ID: 21085679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hybrid of the Chemical Master Equation and the Gillespie Algorithm for Efficient Stochastic Simulations of Sub-Networks.
    Albert J
    PLoS One; 2016; 11(3):e0149909. PubMed ID: 26930199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.
    Caglar MU; Pal R
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1125-36. PubMed ID: 24384703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.