These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22941928)

  • 1. The temperature dependence of Cu2O formation on a Cu(110) surface with an energetic O2 molecular beam.
    Hashinokuchi M; Yoshigoe A; Teraoka Y; Okada M
    J Phys Condens Matter; 2012 Oct; 24(39):395007. PubMed ID: 22941928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of oxygen adsorption and initial oxidation on Cu(110) by hyperthermal oxygen molecular beams.
    Moritani K; Okada M; Teraoka Y; Yoshigoe A; Kasai T
    J Phys Chem A; 2009 Dec; 113(52):15217-22. PubMed ID: 19810738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of alloying and segregation for the reactivity and diffusion of oxygen on Cu3Au(111).
    Oka K; Tsuda Y; Makino T; Okada M; Hashinokuchi M; Yoshigoe A; Teraoka Y; Kasai H
    Phys Chem Chem Phys; 2014 Sep; 16(36):19702-11. PubMed ID: 25116940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale oxidation of Cu100: oxide morphology and surface reactivity.
    Lampimäki M; Lahtonen K; Hirsimäki M; Valden M
    J Chem Phys; 2007 Jan; 126(3):034703. PubMed ID: 17249892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of step geometry in copper oxidation by hyperthermal O2 molecular beam: Cu(511) vs Cu(410).
    Okada M; Vattuone L; Rocca M; Teraoka Y
    J Chem Phys; 2012 Mar; 136(9):094704. PubMed ID: 22401465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial stages of Cu3Au(111) oxidation: oxygen induced Cu segregation and the protective Au layer profile.
    Tsuda Y; Oka K; Makino T; Okada M; Diño WA; Hashinokuchi M; Yoshigoe A; Teraoka Y; Kasai H
    Phys Chem Chem Phys; 2014 Feb; 16(8):3815-22. PubMed ID: 24434902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen adsorption-induced nanostructures and island formation on Cu{100}: Bridging the gap between the formation of surface confined oxygen chemisorption layer and oxide formation.
    Lahtonen K; Hirsimäki M; Lampimäki M; Valden M
    J Chem Phys; 2008 Sep; 129(12):124703. PubMed ID: 19045044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ synchrotron radiation photoelectron spectroscopy study of the oxidation of the Ge(100)-2 × 1 surface by supersonic molecular oxygen beams.
    Yoshigoe A; Teraoka Y; Okada R; Yamada Y; Sasaki M
    J Chem Phys; 2014 Nov; 141(17):174708. PubMed ID: 25381538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution electron energy loss spectroscopy study of O-Cu(410).
    Vattuone L; Savio L; Gerbi A; Okada M; Moritani K; Rocca M
    J Phys Chem B; 2007 Feb; 111(7):1679-83. PubMed ID: 17263572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption dynamics of water on Pt{110}-(1 x 2).
    Laffir FR; Fiorin V; King DA
    J Chem Phys; 2008 Mar; 128(11):114717. PubMed ID: 18361611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst Chemical State during CO Oxidation Reaction on Cu(111) Studied with Ambient-Pressure X-ray Photoelectron Spectroscopy and Near Edge X-ray Adsorption Fine Structure Spectroscopy.
    Eren B; Heine C; Bluhm H; Somorjai GA; Salmeron M
    J Am Chem Soc; 2015 Sep; 137(34):11186-90. PubMed ID: 26275662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption dynamics of CO2 on copper-precovered ZnO(0001)-Zn: a molecular-beam scattering and thermal-desorption spectroscopy study.
    Wang J; Funk S; Burghaus U
    J Chem Phys; 2005 Nov; 123(20):204710. PubMed ID: 16351296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-visiting the O/Cu(111) system--when metastable surface oxides could become an issue!
    Richter NA; Kim CE; Stampfl C; Soon A
    Phys Chem Chem Phys; 2014 Dec; 16(48):26735-40. PubMed ID: 25371061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface atom mobility and charge transfer effects on CuO and Cu
    Tsuda Y; Gueriba JS; Makino T; Diño WA; Yoshigoe A; Okada M
    Sci Rep; 2021 Feb; 11(1):3906. PubMed ID: 33589680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of oxygen with TiN(001): N<-->O exchange and oxidation process.
    Graciani J; Fdez Sanz J; Asaki T; Nakamura K; Rodriguez JA
    J Chem Phys; 2007 Jun; 126(24):244713. PubMed ID: 17614583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations.
    Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD
    Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of CO on the copper-precovered ZnO(0001) surface: a molecular-beam scattering study.
    Wang J; Burghaus U
    J Chem Phys; 2005 Nov; 123(18):184716. PubMed ID: 16292930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O2 induced Cu surface segregation in Au-Cu alloys studied by angle resolved XPS and DFT modelling.
    Völker E; Williams FJ; Calvo EJ; Jacob T; Schiffrin DJ
    Phys Chem Chem Phys; 2012 May; 14(20):7448-55. PubMed ID: 22514022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A first-principles density functional study of chlorophenol adsorption on Cu2O(110):CuO.
    Altarawneh M; Radny MW; Smith PV; Mackie JC; Kennedy EM; Dlugogorski BZ; Soon A; Stampfl C
    J Chem Phys; 2009 May; 130(18):184505. PubMed ID: 19449934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisit of XPS Studies of Supersonic O
    Hayashida K; Tsuda Y; Yamada T; Yoshigoe A; Okada M
    ACS Omega; 2021 Oct; 6(40):26814-26820. PubMed ID: 34661036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.