BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22942040)

  • 1. Identification of sit-to-stand and stand-to-sit transitions using a single inertial sensor.
    Rodríguez-Martín D; Samà A; Pérez-López C; Català A
    Stud Health Technol Inform; 2012; 177():113-7. PubMed ID: 22942040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and classification of postural transitions in real-world conditions.
    Ganea R; Paraschiv-lonescu A; Aminian K
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):688-96. PubMed ID: 22692942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of orientation sensors for use with a functional electrical stimulation mobility system.
    Simcox S; Parker S; Davis GM; Smith RW; Middleton JW
    J Biomech; 2005 May; 38(5):1185-90. PubMed ID: 15797599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models.
    Allen FR; Ambikairajah E; Lovell NH; Celler BG
    Physiol Meas; 2006 Oct; 27(10):935-51. PubMed ID: 16951454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics and dynamic complexity of postural transitions in frail elderly subjects.
    Ganea R; Paraschiv-Ionescu A; Salarian A; Büla C; Martin E; Rochat S; Hoskovec C; Piot-Ziegler C; Aminian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6118-21. PubMed ID: 18003411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly.
    Najafi B; Aminian K; Loew F; Blanc Y; Robert PA
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):843-51. PubMed ID: 12148823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers.
    Giansanti D; Maccioni G; Macellari V
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1271-7. PubMed ID: 16041990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of accelerometry to assess balance control during sit-to-stand movement.
    Janssen WG; Külcü DG; Horemans HL; Stam HJ; Bussmann JB
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):479-84. PubMed ID: 18990651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A system for inference of spatial context of Parkinson's disease patients.
    Takač B; Català A; Cabestany J; Chen W; Rauterberg M
    Stud Health Technol Inform; 2012; 177():126-31. PubMed ID: 22942043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people.
    Ganea R; Paraschiv-Ionescu A; Büla C; Rochat S; Aminian K
    Med Eng Phys; 2011 Nov; 33(9):1086-93. PubMed ID: 21601505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sit-stand and stand-sit transitions in older adults and patients with Parkinson's disease: event detection based on motion sensors versus force plates.
    Zijlstra A; Mancini M; Lindemann U; Chiari L; Zijlstra W
    J Neuroeng Rehabil; 2012 Oct; 9():75. PubMed ID: 23039219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclination measurement of human movement using a 3-D accelerometer with autocalibration.
    Luinge HJ; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):112-21. PubMed ID: 15068194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic activity classification based on automatic adaptation of postural orientation.
    Song SK; Jang J; Park SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6175-8. PubMed ID: 19964894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Criterion validity and between-day reliability of an inertial-sensor-based trunk postural stability test during unstable sitting.
    Larivière C; Mecheri H; Shahvarpour A; Gagnon D; Shirazi-Adl A
    J Electromyogr Kinesiol; 2013 Aug; 23(4):899-907. PubMed ID: 23582401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal inertial sensor location for ambulatory measurement of trunk inclination.
    Faber GS; Kingma I; Bruijn SM; van Dieën JH
    J Biomech; 2009 Oct; 42(14):2406-9. PubMed ID: 19665138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A description of an accelerometer-based mobility monitoring technique.
    Lyons GM; Culhane KM; Hilton D; Grace PA; Lyons D
    Med Eng Phys; 2005 Jul; 27(6):497-504. PubMed ID: 15990066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait posture estimation using wearable acceleration and gyro sensors.
    Takeda R; Tadano S; Natorigawa A; Todoh M; Yoshinari S
    J Biomech; 2009 Nov; 42(15):2486-94. PubMed ID: 19682694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelet based approach for posture transition estimation using a waist worn accelerometer.
    Bidargaddi N; Klingbeil L; Sarela A; Boyle J; Cheung V; Yelland C; Karunanithi M; Gray L
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1884-7. PubMed ID: 18002349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.