These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22942077)

  • 1. Rainbow: an integrated tool for efficient clustering and assembling RAD-seq reads.
    Chong Z; Ruan J; Wu CI
    Bioinformatics; 2012 Nov; 28(21):2732-7. PubMed ID: 22942077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An optimized approach for local de novo assembly of overlapping paired-end RAD reads from multiple individuals.
    Li YL; Xue DX; Zhang BD; Liu JX
    R Soc Open Sci; 2018 Feb; 5(2):171589. PubMed ID: 29515871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid and cost-effective approach for the development of polymorphic microsatellites in non-model species using paired-end RAD sequencing.
    Xue DX; Li YL; Liu JX
    Mol Genet Genomics; 2017 Oct; 292(5):1165-1174. PubMed ID: 28634825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics.
    Rochette NC; Rivera-Colón AG; Catchen JM
    Mol Ecol; 2019 Nov; 28(21):4737-4754. PubMed ID: 31550391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EasyCluster2: an improved tool for clustering and assembling long transcriptome reads.
    Bevilacqua V; Pietroleonardo N; Giannino E; Stroppa F; Simone D; Pesole G; Picardi E
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S7. PubMed ID: 25474441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local de novo assembly of RAD paired-end contigs using short sequencing reads.
    Etter PD; Preston JL; Bassham S; Cresko WA; Johnson EA
    PLoS One; 2011 Apr; 6(4):e18561. PubMed ID: 21541009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BAsE-Seq: a method for obtaining long viral haplotypes from short sequence reads.
    Hong LZ; Hong S; Wong HT; Aw PP; Cheng Y; Wilm A; de Sessions PF; Lim SG; Nagarajan N; Hibberd ML; Quake SR; Burkholder WF
    Genome Biol; 2014; 15(11):517. PubMed ID: 25406369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SeedsGraph: an efficient assembler for next-generation sequencing data.
    Wang C; Guo M; Liu X; Liu Y; Zou Q
    BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S13. PubMed ID: 26044652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SEED: efficient clustering of next-generation sequences.
    Bao E; Jiang T; Kaloshian I; Girke T
    Bioinformatics; 2011 Sep; 27(18):2502-9. PubMed ID: 21810899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution.
    Ge H; Liu K; Juan T; Fang F; Newman M; Hoeck W
    Bioinformatics; 2011 Jul; 27(14):1922-8. PubMed ID: 21593131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population structure of Atlantic mackerel inferred from RAD-seq-derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection.
    Rodríguez-Ezpeleta N; Bradbury IR; Mendibil I; Álvarez P; Cotano U; Irigoien X
    Mol Ecol Resour; 2016 Jul; 16(4):991-1001. PubMed ID: 26936210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GRASP2: fast and memory-efficient gene-centric assembly and homolog search for metagenomic sequencing data.
    Zhong C; Yang Y; Yooseph S
    BMC Bioinformatics; 2019 Jun; 20(Suppl 11):276. PubMed ID: 31167633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paired-end RAD-seq for de novo assembly and marker design without available reference.
    Willing EM; Hoffmann M; Klein JD; Weigel D; Dreyer C
    Bioinformatics; 2011 Aug; 27(16):2187-93. PubMed ID: 21712251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ParDRe: faster parallel duplicated reads removal tool for sequencing studies.
    González-Domínguez J; Schmidt B
    Bioinformatics; 2016 May; 32(10):1562-4. PubMed ID: 26803159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data.
    Kobayashi M; Ohyanagi H; Takanashi H; Asano S; Kudo T; Kajiya-Kanegae H; Nagano AJ; Tainaka H; Tokunaga T; Sazuka T; Iwata H; Tsutsumi N; Yano K
    DNA Res; 2017 Aug; 24(4):397-405. PubMed ID: 28498906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-digest RAD-sequencing: do pre- and post-sequencing protocol parameters impact biological results?
    Cumer T; Pouchon C; Boyer F; Yannic G; Rioux D; Bonin A; Capblancq T
    Mol Genet Genomics; 2021 Mar; 296(2):457-471. PubMed ID: 33469716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAD Capture (Rapture): Flexible and Efficient Sequence-Based Genotyping.
    Ali OA; O'Rourke SM; Amish SJ; Meek MH; Luikart G; Jeffres C; Miller MR
    Genetics; 2016 Feb; 202(2):389-400. PubMed ID: 26715661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection.
    Chu HT; Hsiao WW; Chen JC; Yeh TJ; Tsai MH; Lin H; Liu YW; Lee SA; Chen CC; Tsao TT; Kao CY
    Bioinformatics; 2013 Apr; 29(8):1004-10. PubMed ID: 23457040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd.
    Xu P; Xu S; Wu X; Tao Y; Wang B; Wang S; Qin D; Lu Z; Li G
    Plant J; 2014 Feb; 77(3):430-42. PubMed ID: 24320550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HISEA: HIerarchical SEed Aligner for PacBio data.
    Khiste N; Ilie L
    BMC Bioinformatics; 2017 Dec; 18(1):564. PubMed ID: 29258419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.