These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22942077)

  • 21. Blue: correcting sequencing errors using consensus and context.
    Greenfield P; Duesing K; Papanicolaou A; Bauer DC
    Bioinformatics; 2014 Oct; 30(19):2723-32. PubMed ID: 24919879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting RAD-seq Marker Numbers across the Eukaryotic Tree of Life.
    Herrera S; Reyes-Herrera PH; Shank TM
    Genome Biol Evol; 2015 Nov; 7(12):3207-25. PubMed ID: 26537225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progressive approach for SNP calling and haplotype assembly using single molecular sequencing data.
    Guo F; Wang D; Wang L
    Bioinformatics; 2018 Jun; 34(12):2012-2018. PubMed ID: 29474523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. COPE: an accurate k-mer-based pair-end reads connection tool to facilitate genome assembly.
    Liu B; Yuan J; Yiu SM; Li Z; Xie Y; Chen Y; Shi Y; Zhang H; Li Y; Lam TW; Luo R
    Bioinformatics; 2012 Nov; 28(22):2870-4. PubMed ID: 23044551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Population genomic analysis of model and nonmodel organisms using sequenced RAD tags.
    Hohenlohe PA; Catchen J; Cresko WA
    Methods Mol Biol; 2012; 888():235-60. PubMed ID: 22665285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Haplotype inference from short sequence reads using a population genealogical history model.
    Zhang J; Wu Y
    Pac Symp Biocomput; 2011; ():288-99. PubMed ID: 21121056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes.
    Srivastava A; Sarkar H; Gupta N; Patro R
    Bioinformatics; 2016 Jun; 32(12):i192-i200. PubMed ID: 27307617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alignment-free clustering of UMI tagged DNA molecules.
    Orabi B; Erhan E; McConeghy B; Volik SV; Le Bihan S; Bell R; Collins CC; Chauve C; Hach F
    Bioinformatics; 2019 Jun; 35(11):1829-1836. PubMed ID: 30351359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal spliced alignments of short sequence reads.
    De Bona F; Ossowski S; Schneeberger K; Rätsch G
    Bioinformatics; 2008 Aug; 24(16):i174-80. PubMed ID: 18689821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deriving genotypes from RAD-seq short-read data using Stacks.
    Rochette NC; Catchen JM
    Nat Protoc; 2017 Dec; 12(12):2640-2659. PubMed ID: 29189774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methods for assembling reads and producing contigs.
    Orlandini V; Fondi M; Fani R
    Methods Mol Biol; 2015; 1231():151-61. PubMed ID: 25343864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ddSeeker: a tool for processing Bio-Rad ddSEQ single cell RNA-seq data.
    Romagnoli D; Boccalini G; Bonechi M; Biagioni C; Fassan P; Bertorelli R; De Sanctis V; Di Leo A; Migliaccio I; Malorni L; Benelli M
    BMC Genomics; 2018 Dec; 19(1):960. PubMed ID: 30583719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A highly robust and optimized sequence-based approach for genetic polymorphism discovery and genotyping in large plant populations.
    Jiang N; Zhang F; Wu J; Chen Y; Hu X; Fang O; Leach LJ; Wang D; Luo Z
    Theor Appl Genet; 2016 Sep; 129(9):1739-57. PubMed ID: 27316437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses.
    Eaton DA
    Bioinformatics; 2014 Jul; 30(13):1844-9. PubMed ID: 24603985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correction of sequencing errors in a mixed set of reads.
    Salmela L
    Bioinformatics; 2010 May; 26(10):1284-90. PubMed ID: 20378555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SNP discovery in common bean by restriction-associated DNA (RAD) sequencing for genetic diversity and population structure analysis.
    Valdisser PA; Pappas GJ; de Menezes IP; Müller BS; Pereira WJ; Narciso MG; Brondani C; Souza TL; Borba TC; Vianello RP
    Mol Genet Genomics; 2016 Jun; 291(3):1277-91. PubMed ID: 26932372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FastUniq: a fast de novo duplicates removal tool for paired short reads.
    Xu H; Luo X; Qian J; Pang X; Song J; Qian G; Chen J; Chen S
    PLoS One; 2012; 7(12):e52249. PubMed ID: 23284954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SNP discovery and genotyping for evolutionary genetics using RAD sequencing.
    Etter PD; Bassham S; Hohenlohe PA; Johnson EA; Cresko WA
    Methods Mol Biol; 2011; 772():157-78. PubMed ID: 22065437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PhredEM: a phred-score-informed genotype-calling approach for next-generation sequencing studies.
    Liao P; Satten GA; Hu YJ
    Genet Epidemiol; 2017 Jul; 41(5):375-387. PubMed ID: 28560825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.