These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22942251)

  • 1. Changes in cytosolic ATP levels and intracellular morphology during bacteria-induced hypersensitive cell death as revealed by real-time fluorescence microscopy imaging.
    Hatsugai N; Perez Koldenkova V; Imamura H; Noji H; Nagai T
    Plant Cell Physiol; 2012 Oct; 53(10):1768-75. PubMed ID: 22942251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response.
    Zhang C; Czymmek KJ; Shapiro AD
    Mol Plant Microbe Interact; 2003 Nov; 16(11):962-72. PubMed ID: 14601664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae.
    Acharya BR; Raina S; Maqbool SB; Jagadeeswaran G; Mosher SL; Appel HM; Schultz JC; Klessig DF; Raina R
    Plant J; 2007 May; 50(3):488-99. PubMed ID: 17419849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana.
    Freeman BC; Beattie GA
    Mol Plant Microbe Interact; 2009 Jul; 22(7):857-67. PubMed ID: 19522568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of 9-lipoxygenase and α-dioxygenase oxylipin pathways as modulators of local and systemic defense.
    Vicente J; Cascón T; Vicedo B; García-Agustín P; Hamberg M; Castresana C
    Mol Plant; 2012 Jul; 5(4):914-28. PubMed ID: 22199234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quercetin-induced H(2)O(2) mediates the pathogen resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana.
    Jia Z; Zou B; Wang X; Qiu J; Ma H; Gou Z; Song S; Dong H
    Biochem Biophys Res Commun; 2010 May; 396(2):522-7. PubMed ID: 20434432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of Adapter Protein Complex 4 in Hypersensitive Cell Death Induced by Avirulent Bacteria.
    Hatsugai N; Nakatsuji A; Unten O; Ogasawara K; Kondo M; Nishimura M; Shimada T; Katagiri F; Hara-Nishimura I
    Plant Physiol; 2018 Feb; 176(2):1824-1834. PubMed ID: 29242374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Priming for enhanced defence responses by specific inhibition of the Arabidopsis response to coronatine.
    Tsai CH; Singh P; Chen CW; Thomas J; Weber J; Mauch-Mani B; Zimmerli L
    Plant J; 2011 Feb; 65(3):469-79. PubMed ID: 21265899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response.
    Patel S; Dinesh-Kumar SP
    Autophagy; 2008 Jan; 4(1):20-7. PubMed ID: 17932459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infection of tobacco with different Pseudomonas syringae pathovars leads to distinct morphotypes of programmed cell death.
    Krzymowska M; Konopka-Postupolska D; Sobczak M; Macioszek V; Ellis BE; Hennig J
    Plant J; 2007 Apr; 50(2):253-64. PubMed ID: 17355437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of chloroplast trienoic fatty acids in plant disease defense responses.
    Yaeno T; Matsuda O; Iba K
    Plant J; 2004 Dec; 40(6):931-41. PubMed ID: 15584958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas syringae infection triggers de novo synthesis of phytosphingosine from sphinganine in Arabidopsis thaliana.
    Peer M; Stegmann M; Mueller MJ; Waller F
    FEBS Lett; 2010 Sep; 584(18):4053-6. PubMed ID: 20732322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in pseudomonas syringae.
    Zhao Y; He SY; Sundin GW
    Mol Plant Microbe Interact; 2006 Jun; 19(6):644-54. PubMed ID: 16776298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana.
    Underwood W; Zhang S; He SY
    Plant J; 2007 Nov; 52(4):658-72. PubMed ID: 17877704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1.
    Pétriacq P; de Bont L; Hager J; Didierlaurent L; Mauve C; Guérard F; Noctor G; Pelletier S; Renou JP; Tcherkez G; Gakière B
    Plant J; 2012 May; 70(4):650-65. PubMed ID: 22268572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains.
    Mishina TE; Zeier J
    Physiol Plant; 2007 Nov; 131(3):448-61. PubMed ID: 18251883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of autophagy in chloroplast degradation and chlorophagy in immune defenses during Pst DC3000 (AvrRps4) infection.
    Dong J; Chen W
    PLoS One; 2013; 8(8):e73091. PubMed ID: 24023671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana.
    Berger S; Benediktyová Z; Matous K; Bonfig K; Mueller MJ; Nedbal L; Roitsch T
    J Exp Bot; 2007; 58(4):797-806. PubMed ID: 17138624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback control of the Arabidopsis hypersensitive response.
    Zhang C; Gutsche AT; Shapiro AD
    Mol Plant Microbe Interact; 2004 Apr; 17(4):357-65. PubMed ID: 15077668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens.
    Wang X; Basnayake BM; Zhang H; Li G; Li W; Virk N; Mengiste T; Song F
    Mol Plant Microbe Interact; 2009 Oct; 22(10):1227-38. PubMed ID: 19737096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.