These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 22942689)
1. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies. Li HZ; Hu LH; Tao W; Gao T; Li H; Lu YH; Su ZM Int J Mol Sci; 2012; 13(7):8051-8070. PubMed ID: 22942689 [TBL] [Abstract][Full Text] [Related]
2. Improving the accuracy of Density Functional Theory (DFT) calculation for homolysis bond dissociation energies of Y-NO bond: generalized regression neural network based on grey relational analysis and principal component analysis. Li HZ; Tao W; Gao T; Li H; Lu YH; Su ZM Int J Mol Sci; 2011; 12(4):2242-61. PubMed ID: 21731439 [TBL] [Abstract][Full Text] [Related]
3. A big data approach to the ultra-fast prediction of DFT-calculated bond energies. Qu X; Latino DA; Aires-de-Sousa J J Cheminform; 2013; 5():34. PubMed ID: 23849655 [TBL] [Abstract][Full Text] [Related]
4. Improving the accuracy of low level quantum chemical calculation for absorption energies: the genetic algorithm and neural network approach. Gao T; Shi LL; Li HB; Zhao SS; Li H; Sun SL; Su ZM; Lu YH Phys Chem Chem Phys; 2009 Jul; 11(25):5124-9. PubMed ID: 19562144 [TBL] [Abstract][Full Text] [Related]
5. The Cobalt-Methyl Bond Dissociation in Methylcobalamin: New Benchmark Analysis Based on Density Functional Theory and Completely Renormalized Coupled-Cluster Calculations. Kozlowski PM; Kumar M; Piecuch P; Li W; Bauman NP; Hansen JA; Lodowski P; Jaworska M J Chem Theory Comput; 2012 Jun; 8(6):1870-94. PubMed ID: 26593822 [TBL] [Abstract][Full Text] [Related]
6. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Balabin RM; Lomakina EI Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265 [TBL] [Abstract][Full Text] [Related]
7. A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases. Gao T; Li H; Li W; Li L; Fang C; Li H; Hu L; Lu Y; Su ZM J Cheminform; 2016; 8():24. PubMed ID: 27148408 [TBL] [Abstract][Full Text] [Related]
8. DFT studies of trans and cis influences in the homolysis of the Co-C bond in models of the alkylcobalamins. Govender PP; Navizet I; Perry CB; Marques HM J Phys Chem A; 2013 Apr; 117(14):3057-68. PubMed ID: 23510290 [TBL] [Abstract][Full Text] [Related]
9. Side reactions of nitroxide-mediated polymerization: N-O versus O-C cleavage of alkoxyamines. Hodgson JL; Roskop LB; Gordon MS; Lin CY; Coote ML J Phys Chem A; 2010 Sep; 114(38):10458-66. PubMed ID: 20812754 [TBL] [Abstract][Full Text] [Related]
10. Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the B3LYP and BP86 functionals and evaluation of the impact of empirical dispersion correction. Hirao H J Phys Chem A; 2011 Aug; 115(33):9308-13. PubMed ID: 21806069 [TBL] [Abstract][Full Text] [Related]
11. Machine Learning to Predict Homolytic Dissociation Energies of C-H Bonds: Calibration of DFT-based Models with Experimental Data. Li W; Luan Y; Zhang Q; Aires-de-Sousa J Mol Inform; 2023 Jan; 42(1):e2200193. PubMed ID: 36167940 [TBL] [Abstract][Full Text] [Related]
12. Thermochemistry, bond energies, and internal rotor potentials of dimethyl tetraoxide. da Silva G; Bozzelli JW J Phys Chem A; 2007 Nov; 111(47):12026-36. PubMed ID: 17983209 [TBL] [Abstract][Full Text] [Related]
13. Antioxidant potential of glutathione: a theoretical study. Fiser B; Szori M; Jójárt B; Izsák R; Csizmadia IG; Viskolcz B J Phys Chem B; 2011 Sep; 115(38):11269-77. PubMed ID: 21853966 [TBL] [Abstract][Full Text] [Related]
14. Calculating bond dissociation energies of X-H (X=C, N, O, S) bonds of aromatic systems via density functional theory: a detailed comparison of methods. Trung NQ; Mechler A; Hoa NT; Vo QV R Soc Open Sci; 2022 Jun; 9(6):220177. PubMed ID: 35706655 [TBL] [Abstract][Full Text] [Related]
15. An improved theoretical approach to the empirical corrections of density functional theory. Lii JH; Hu CH J Comput Aided Mol Des; 2012 Feb; 26(2):199-213. PubMed ID: 22198476 [TBL] [Abstract][Full Text] [Related]
16. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals? Xu X; Zhang W; Tang M; Truhlar DG J Chem Theory Comput; 2015 May; 11(5):2036-52. PubMed ID: 26574408 [TBL] [Abstract][Full Text] [Related]
17. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies. Feng Y; Liu L; Wang JT; Huang H; Guo QX J Chem Inf Comput Sci; 2003; 43(6):2005-13. PubMed ID: 14632451 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, molecular structure and spectral analysis of ethyl 4-[(3,5-dinitrobenzoyl)-hydrazonomethyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate: a combined experimental and quantum chemical approach. Singh RN; Verma D; Kumar A; Baboo V Spectrochim Acta A Mol Biomol Spectrosc; 2012 Mar; 88():60-71. PubMed ID: 22208959 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory. Marchese Robinson RL; Geatches D; Morris C; Mackenzie R; Maloney AGP; Roberts KJ; Moldovan A; Chow E; Pencheva K; Vatvani DRM J Chem Inf Model; 2019 Nov; 59(11):4778-4792. PubMed ID: 31638394 [TBL] [Abstract][Full Text] [Related]
20. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. Schwabe T; Grimme S Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]