These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22943289)

  • 41. HYPERSENSITIVE TO RED AND BLUE 1 and its C-terminal regulatory function control FLOWERING LOCUS T expression.
    Kang X; Zhou Y; Sun X; Ni M
    Plant J; 2007 Dec; 52(5):937-48. PubMed ID: 17916114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ZEITLUPE is required for shade avoidance in the wild tobacco Nicotiana attenuata.
    Zou Y; Li R; Baldwin IT
    J Integr Plant Biol; 2020 Sep; 62(9):1341-1351. PubMed ID: 31628717
    [TBL] [Abstract][Full Text] [Related]  

  • 43. To grow or defend? Low red : far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability.
    Leone M; Keller MM; Cerrudo I; Ballaré CL
    New Phytol; 2014 Oct; 204(2):355-67. PubMed ID: 25103816
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The non-DNA-binding bHLH transcription factor PRE3/bHLH135/ATBS1/TMO7 is involved in the regulation of light signaling pathway in Arabidopsis.
    Castelain M; Le Hir R; Bellini C
    Physiol Plant; 2012 Jul; 145(3):450-60. PubMed ID: 22339648
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light.
    Kneissl J; Shinomura T; Furuya M; Bolle C
    Mol Plant; 2008 Jan; 1(1):84-102. PubMed ID: 20031917
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gene profiling of the red light signalling pathways in roots.
    Molas ML; Kiss JZ; Correll MJ
    J Exp Bot; 2006; 57(12):3217-29. PubMed ID: 16908503
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Arabidopsis thaliana TERMINAL FLOWER2 is involved in light-controlled signalling during seedling photomorphogenesis.
    Valdés AE; Rizzardi K; Johannesson H; Para A; Sundås-Larsson A; Landberg K
    Plant Cell Environ; 2012 Jun; 35(6):1013-25. PubMed ID: 22145973
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling.
    Park DH; Lim PO; Kim JS; Cho DS; Hong SH; Nam HG
    Plant J; 2003 Apr; 34(2):161-71. PubMed ID: 12694592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SWAP1-SFPS-RRC1 splicing factor complex modulates pre-mRNA splicing to promote photomorphogenesis in
    Kathare PK; Xin R; Ganesan AS; June VM; Reddy ASN; Huq E
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2214565119. PubMed ID: 36282917
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phytochrome control of the Arabidopsis transcriptome anticipates seedling exposure to light.
    Mazzella MA; Arana MV; Staneloni RJ; Perelman S; Rodriguez Batiller MJ; Muschietti J; Cerdán PD; Chen K; Sánchez RA; Zhu T; Chory J; Casal JJ
    Plant Cell; 2005 Sep; 17(9):2507-16. PubMed ID: 16024587
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antagonistic regulation of leaf flattening by phytochrome B and phototropin in Arabidopsis thaliana.
    Kozuka T; Suetsugu N; Wada M; Nagatani A
    Plant Cell Physiol; 2013 Jan; 54(1):69-79. PubMed ID: 23054390
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Overexpression of a Populus trichocarpa H+-pyrophosphatase gene PtVP1.1 confers salt tolerance on transgenic poplar.
    Yang Y; Tang RJ; Li B; Wang HH; Jin YL; Jiang CM; Bao Y; Su HY; Zhao N; Ma XJ; Yang L; Chen SL; Cheng XH; Zhang HX
    Tree Physiol; 2015 Jun; 35(6):663-77. PubMed ID: 25877769
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp.
    Benedict C; Skinner JS; Meng R; Chang Y; Bhalerao R; Huner NP; Finn CE; Chen TH; Hurry V
    Plant Cell Environ; 2006 Jul; 29(7):1259-72. PubMed ID: 17080948
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana.
    Su L; Hou P; Song M; Zheng X; Guo L; Xiao Y; Yan L; Li W; Yang J
    Int J Mol Sci; 2015 May; 16(6):12199-212. PubMed ID: 26030677
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Roles for the N- and C-terminal domains of phytochrome B in interactions between phytochrome B and cryptochrome signaling cascades.
    Usami T; Matsushita T; Oka Y; Mochizuki N; Nagatani A
    Plant Cell Physiol; 2007 Mar; 48(3):424-33. PubMed ID: 17251203
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Shade avoidance in the context of climate change.
    Casal JJ; Fankhauser C
    Plant Physiol; 2023 Mar; 191(3):1475-1491. PubMed ID: 36617439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shade-induced RTFL/DVL peptides negatively regulate the shade response by directly interacting with BSKs in Arabidopsis.
    Huang S; Ma Y; Xu Y; Lu P; Yang J; Xie Y; Gan J; Li L
    Nat Commun; 2023 Oct; 14(1):6898. PubMed ID: 37898648
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Shade Promotes Phototropism through Phytochrome B-Controlled Auxin Production.
    Goyal A; Karayekov E; Galvão VC; Ren H; Casal JJ; Fankhauser C
    Curr Biol; 2016 Dec; 26(24):3280-3287. PubMed ID: 27889263
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TCP Transcription Factors Regulate Shade Avoidance via Directly Mediating the Expression of Both
    Zhou Y; Zhang D; An J; Yin H; Fang S; Chu J; Zhao Y; Li J
    Plant Physiol; 2018 Feb; 176(2):1850-1861. PubMed ID: 29254986
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings.
    Keuskamp DH; Sasidharan R; Vos I; Peeters AJ; Voesenek LA; Pierik R
    Plant J; 2011 Jul; 67(2):208-17. PubMed ID: 21457374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.