These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22943541)

  • 1. High-throughput whole genome analysis provides insight into how the major drugs against African sleeping sickness operate.
    Rudenko G
    Pathog Glob Health; 2012 May; 106(2):79. PubMed ID: 22943541
    [No Abstract]   [Full Text] [Related]  

  • 2. Forward Genetics in African Trypanosomes.
    Hutchinson S; Glover L
    Methods Mol Biol; 2020; 2116():339-352. PubMed ID: 32221930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemotherapeutic strategies against Trypanosoma brucei: drug targets vs. drug targeting.
    Lüscher A; de Koning HP; Mäser P
    Curr Pharm Des; 2007; 13(6):555-67. PubMed ID: 17346174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of Aromathecins against African Trypanosomes.
    Nenortas NP; Cinelli MA; Morrell AE; Cushman M; Shapiro TA
    Antimicrob Agents Chemother; 2018 Nov; 62(11):. PubMed ID: 30104277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of novel drugs for human African trypanosomiasis.
    Brun R; Don R; Jacobs RT; Wang MZ; Barrett MP
    Future Microbiol; 2011 Jun; 6(6):677-91. PubMed ID: 21707314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug resistance in Trypanosoma brucei spp., the causative agents of sleeping sickness in man and nagana in cattle.
    Matovu E; Seebeck T; Enyaru JC; Kaminsky R
    Microbes Infect; 2001 Jul; 3(9):763-70. PubMed ID: 11489425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery.
    Matthews KR
    Mol Biochem Parasitol; 2015; 200(1-2):30-40. PubMed ID: 25736427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness.
    Abdeen S; Salim N; Mammadova N; Summers CM; Goldsmith-Pestana K; McMahon-Pratt D; Schultz PG; Horwich AL; Chapman E; Johnson SM
    Bioorg Med Chem Lett; 2016 Nov; 26(21):5247-5253. PubMed ID: 27720295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimisation of the anti-Trypanosoma brucei activity of the opioid agonist U50488.
    Smith VC; Cleghorn LA; Woodland A; Spinks D; Hallyburton I; Collie IT; Mok NY; Norval S; Brenk R; Fairlamb AH; Frearson JA; Read KD; Gilbert IH; Wyatt PG
    ChemMedChem; 2011 Oct; 6(10):1832-40. PubMed ID: 21834094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model System Identifies Kinetic Driver of Hsp90 Inhibitor Activity against African Trypanosomes and Plasmodium falciparum.
    Meyer KJ; Caton E; Shapiro TA
    Antimicrob Agents Chemother; 2018 Aug; 62(8):. PubMed ID: 29866861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale RNAi screens in African trypanosomes.
    Horn D
    Trends Parasitol; 2022 Feb; 38(2):160-173. PubMed ID: 34580035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of anti-sleeping-sickness drugs and topoisomerase inhibitors in combination on Trypanosoma brucei.
    Steverding D; Wang X
    J Antimicrob Chemother; 2009 Jun; 63(6):1293-5. PubMed ID: 19336455
    [No Abstract]   [Full Text] [Related]  

  • 13. Closing in on a new treatment for sleeping sickness.
    Derbyshire ER; Clardy J
    Elife; 2013 Jul; 2():e01042. PubMed ID: 23853715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of arylsubstituted imidazoles derivatives as antiprotozoal agents and docking studies on sterol 14α-demethylase (CYP51) from Trypanosoma cruzi, Leishmania infantum, and Trypanosoma brucei.
    Rojas Vargas JA; López AG; Pérez Y; Cos P; Froeyen M
    Parasitol Res; 2019 May; 118(5):1533-1548. PubMed ID: 30903349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Independence from Kinetoplast DNA maintenance and expression is associated with multidrug resistance in Trypanosoma brucei in vitro.
    Gould MK; Schnaufer A
    Antimicrob Agents Chemother; 2014 May; 58(5):2925-8. PubMed ID: 24550326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo anti-Trypanosoma brucei activities of phenazinomycin and related compounds.
    Otoguro K; Ishiyama A; Iwatsuki M; Namatame M; Nishihara-Tukashima A; Nakashima T; Shibahara S; Kondo S; Yamada H; Omura S
    J Antibiot (Tokyo); 2010 Sep; 63(9):579-81. PubMed ID: 20588299
    [No Abstract]   [Full Text] [Related]  

  • 17. Parasitology. Drugs to combat tropical protozoan parasites.
    Gelb MH; Hol WG
    Science; 2002 Jul; 297(5580):343-4. PubMed ID: 12130767
    [No Abstract]   [Full Text] [Related]  

  • 18. 3-(Oxazolo[4,5-b]pyridin-2-yl)anilides as a novel class of potent inhibitors for the kinetoplastid Trypanosoma brucei, the causative agent for human African trypanosomiasis.
    Ferrins L; Rahmani R; Sykes ML; Jones AJ; Avery VM; Teston E; Almohaywi B; Yin J; Smith J; Hyland C; White KL; Ryan E; Campbell M; Charman SA; Kaiser M; Baell JB
    Eur J Med Chem; 2013 Aug; 66():450-65. PubMed ID: 23831695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavonoid-derived Privileged Scaffolds in anti-Trypanosoma brucei Drug Discovery.
    Boniface PK; Elizabeth FI
    Curr Drug Targets; 2019; 20(12):1295-1314. PubMed ID: 31215385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology.
    Schmidt RS; Macêdo JP; Steinmann ME; Salgado AG; Bütikofer P; Sigel E; Rentsch D; Mäser P
    FEBS J; 2018 Mar; 285(6):1012-1023. PubMed ID: 29063677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.