These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 22944007)
1. Fermentation characteristics of resistant starch from maize prepared by the enzymatic method in vitro. Zhang H; Xu X; Jin Z Int J Biol Macromol; 2012 Dec; 51(5):1185-8. PubMed ID: 22944007 [TBL] [Abstract][Full Text] [Related]
2. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content. Brewer LR; Cai L; Shi YC J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190 [TBL] [Abstract][Full Text] [Related]
3. Structure and properties of maize starch processed with a combination of α-amylase and pullulanase. Zhang H; Tian Y; Bai Y; Xu X; Jin Z Int J Biol Macromol; 2013 Jan; 52():38-44. PubMed ID: 23043758 [TBL] [Abstract][Full Text] [Related]
4. Fermentation of Metroxylon sagu resistant starch type III by Lactobacillus sp. and Bifidobacterium bifidum. Siew-Wai L; Zi-Ni T; Karim AA; Hani NM; Rosma A J Agric Food Chem; 2010 Feb; 58(4):2274-8. PubMed ID: 20121195 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic Modification of Corn Starch Influences Human Fecal Fermentation Profiles. Dura A; Rose DJ; Rosell CM J Agric Food Chem; 2017 Jun; 65(23):4651-4657. PubMed ID: 28553713 [TBL] [Abstract][Full Text] [Related]
6. High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles. Bui AT; Williams BA; Hoedt EC; Morrison M; Mikkelsen D; Gidley MJ Food Funct; 2020 Jun; 11(6):5635-5646. PubMed ID: 32537617 [TBL] [Abstract][Full Text] [Related]
7. Resistant Starch is Actively Fermented by Infant Faecal Microbiota and Increases Microbial Diversity. Gopalsamy G; Mortimer E; Greenfield P; Bird AR; Young GP; Christophersen CT Nutrients; 2019 Jun; 11(6):. PubMed ID: 31208010 [TBL] [Abstract][Full Text] [Related]
8. Short communication: in vitro ruminal fermentability of a modified corn cultivar expressing a thermotolerant α-amylase. Hu W; Persia ME; Kung L J Dairy Sci; 2010 Oct; 93(10):4846-9. PubMed ID: 20855018 [TBL] [Abstract][Full Text] [Related]
9. Resistant starch, fermented resistant starch, and short-chain fatty acids reduce intestinal fat deposition in Caenorhabditis elegans. Zheng J; Enright F; Keenan M; Finley J; Zhou J; Ye J; Greenway F; Senevirathne RN; Gissendanner CR; Manaois R; Prudente A; King JM; Martin R J Agric Food Chem; 2010 Apr; 58(8):4744-8. PubMed ID: 20353151 [TBL] [Abstract][Full Text] [Related]
10. Production and in vitro fermentation of soluble, non-digestible, feruloylated oligo- and polysaccharides from maize and wheat brans. Yang J; Maldonado-Gómez MX; Hutkins RW; Rose DJ J Agric Food Chem; 2014 Jan; 62(1):159-66. PubMed ID: 24359228 [TBL] [Abstract][Full Text] [Related]
11. Development of maize starch with a slow digestion property using maltogenic α-amylase. Miao M; Xiong S; Ye F; Jiang B; Cui SW; Zhang T Carbohydr Polym; 2014 Mar; 103():164-9. PubMed ID: 24528715 [TBL] [Abstract][Full Text] [Related]
12. Comparative effects of three resistant starch preparations on transit time and short-chain fatty acid production in rats. Ferguson LR; Tasman-Jones C; Englyst H; Harris PJ Nutr Cancer; 2000; 36(2):230-7. PubMed ID: 10890035 [TBL] [Abstract][Full Text] [Related]
13. Small intestinal malabsorption and colonic fermentation of resistant starch and resistant peptides to short-chain fatty acids. Nordgaard I; Mortensen PB; Langkilde AM Nutrition; 1995; 11(2):129-37. PubMed ID: 7544175 [TBL] [Abstract][Full Text] [Related]
14. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Jha R; Leterme P Animal; 2012 Apr; 6(4):603-11. PubMed ID: 22436276 [TBL] [Abstract][Full Text] [Related]
15. Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches. Lopez-Rubio A; Flanagan BM; Shrestha AK; Gidley MJ; Gilbert EP Biomacromolecules; 2008 Jul; 9(7):1951-8. PubMed ID: 18529077 [TBL] [Abstract][Full Text] [Related]
16. Influence of different levels and sources of resistant starch on faecal quality of dogs of various body sizes. Goudez R; Weber M; Biourge V; Nguyen P Br J Nutr; 2011 Oct; 106 Suppl 1():S211-5. PubMed ID: 22005431 [TBL] [Abstract][Full Text] [Related]
17. Fermentation of starch by Klebsiella oxytoca p2, containing plasmids with alpha-amylase and pullulanase genes. dos Santos VL; Araújo EF; de Barros EG; Guimarães WV Biotechnol Bioeng; 1999 Dec; 65(6):673-6. PubMed ID: 10550774 [TBL] [Abstract][Full Text] [Related]
18. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. Bednar GE; Patil AR; Murray SM; Grieshop CM; Merchen NR; Fahey GC J Nutr; 2001 Feb; 131(2):276-86. PubMed ID: 11160546 [TBL] [Abstract][Full Text] [Related]
19. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Le Leu RK; Brown IL; Hu Y; Morita T; Esterman A; Young GP Carcinogenesis; 2007 Feb; 28(2):240-5. PubMed ID: 17166881 [TBL] [Abstract][Full Text] [Related]
20. Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents. Moore SA; Ai Y; Chang F; Jane JL Carbohydr Polym; 2015 Jan; 115():465-71. PubMed ID: 25439920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]