These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 22944386)
1. Contribution of the frontal eye field to gaze shifts in the head-unrestrained rhesus monkey: neuronal activity. Knight TA Neuroscience; 2012 Dec; 225():213-36. PubMed ID: 22944386 [TBL] [Abstract][Full Text] [Related]
2. Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation. Knight TA; Fuchs AF J Neurophysiol; 2007 Jan; 97(1):618-34. PubMed ID: 17065243 [TBL] [Abstract][Full Text] [Related]
3. 3-Dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex. Constantin AG; Wang H; Monteon JA; Martinez-Trujillo JC; Crawford JD Neuroscience; 2009 Dec; 164(3):1284-302. PubMed ID: 19733631 [TBL] [Abstract][Full Text] [Related]
4. Head-free gaze shifts provide further insights into the role of the medial cerebellum in the control of primate saccadic eye movements. Fuchs AF; Brettler S; Ling L J Neurophysiol; 2010 Apr; 103(4):2158-73. PubMed ID: 20164388 [TBL] [Abstract][Full Text] [Related]
5. Widespread presaccadic recruitment of neck muscles by stimulation of the primate frontal eye fields. Elsley JK; Nagy B; Cushing SL; Corneil BD J Neurophysiol; 2007 Sep; 98(3):1333-54. PubMed ID: 17625064 [TBL] [Abstract][Full Text] [Related]
6. Electrical stimulation of the frontal eye fields in the head-free macaque evokes kinematically normal 3D gaze shifts. Monteon JA; Constantin AG; Wang H; Martinez-Trujillo J; Crawford JD J Neurophysiol; 2010 Dec; 104(6):3462-75. PubMed ID: 20881198 [TBL] [Abstract][Full Text] [Related]
7. Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command. Freedman EG; Sparks DL J Neurophysiol; 1997 Sep; 78(3):1669-90. PubMed ID: 9310452 [TBL] [Abstract][Full Text] [Related]
9. Spatial characteristics of neurons in the central mesencephalic reticular formation (cMRF) of head-unrestrained monkeys. Pathmanathan JS; Presnell R; Cromer JA; Cullen KE; Waitzman DM Exp Brain Res; 2006 Jan; 168(4):455-70. PubMed ID: 16292575 [TBL] [Abstract][Full Text] [Related]
10. Action of the brain stem saccade generator during horizontal gaze shifts. I. Discharge patterns of omnidirectional pause neurons. Phillips JO; Ling L; Fuchs AF J Neurophysiol; 1999 Mar; 81(3):1284-95. PubMed ID: 10085355 [TBL] [Abstract][Full Text] [Related]
11. Analysis of primate IBN spike trains using system identification techniques. II. Relationship to gaze, eye, and head movement dynamics during head-free gaze shifts. Cullen KE; Guitton D J Neurophysiol; 1997 Dec; 78(6):3283-306. PubMed ID: 9405545 [TBL] [Abstract][Full Text] [Related]
12. Firing patterns in superior colliculus of head-unrestrained monkey during normal and perturbed gaze saccades reveal short-latency feedback and a sluggish rostral shift in activity. Choi WY; Guitton D J Neurosci; 2009 Jun; 29(22):7166-80. PubMed ID: 19494139 [TBL] [Abstract][Full Text] [Related]
13. Temporal characteristics of neurons in the central mesencephalic reticular formation of head unrestrained monkeys. Pathmanathan JS; Cromer JA; Cullen KE; Waitzman DM Exp Brain Res; 2006 Jan; 168(4):471-92. PubMed ID: 16292574 [TBL] [Abstract][Full Text] [Related]
14. Head-eye interactions during vertical gaze shifts made by rhesus monkeys. Freedman EG Exp Brain Res; 2005 Dec; 167(4):557-70. PubMed ID: 16132972 [TBL] [Abstract][Full Text] [Related]
15. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. II. Effects on metrics and kinematics of ongoing gaze shifts to visual targets. Freedman EG; Quessy S Exp Brain Res; 2004 Jun; 156(3):357-76. PubMed ID: 14985900 [TBL] [Abstract][Full Text] [Related]
16. Gaze shift duration, independent of amplitude, influences the number of spikes in the burst for medium-lead burst neurons in pontine reticular formation. Walton MM; Freedman EG Exp Brain Res; 2011 Oct; 214(2):225-39. PubMed ID: 21842410 [TBL] [Abstract][Full Text] [Related]
17. Activity of neurons in monkey superior colliculus during interrupted saccades. Munoz DP; Waitzman DM; Wurtz RH J Neurophysiol; 1996 Jun; 75(6):2562-80. PubMed ID: 8793764 [TBL] [Abstract][Full Text] [Related]
18. Activity of long-lead burst neurons in pontine reticular formation during head-unrestrained gaze shifts. Walton MM; Freedman EG J Neurophysiol; 2014 Jan; 111(2):300-12. PubMed ID: 24174648 [TBL] [Abstract][Full Text] [Related]
19. Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory-Motor Transformation. Sajad A; Sadeh M; Yan X; Wang H; Crawford JD eNeuro; 2016; 3(2):. PubMed ID: 27092335 [TBL] [Abstract][Full Text] [Related]
20. Coupling between horizontal and vertical components of saccadic eye movements during constant amplitude and direction gaze shifts in the rhesus monkey. Freedman EG J Neurophysiol; 2008 Dec; 100(6):3375-93. PubMed ID: 18945817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]