These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22944397)

  • 1. Bromide-free oxidizing system for carboxylic moiety formation in cellulose chain.
    Coseri S; Biliuta G
    Carbohydr Polym; 2012 Nov; 90(4):1415-9. PubMed ID: 22944397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mild and selective oxidation of cellulose fibers in the presence of N-hydroxyphthalimide.
    Coseri S; Nistor G; Fras L; Strnad S; Harabagiu V; Simionescu BC
    Biomacromolecules; 2009 Aug; 10(8):2294-9. PubMed ID: 19722560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-sided surface modification of cellulose fabric by printing a modified TEMPO-mediated oxidant.
    Fitz-Binder C; Bechtold T
    Carbohydr Polym; 2014 Jun; 106():142-7. PubMed ID: 24721061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison study of TEMPO and phthalimide-N-oxyl (PINO) radicals on oxidation efficiency toward cellulose.
    Biliuta G; Fras L; Drobota M; Persin Z; Kreze T; Stana-Kleinschek K; Ribitsch V; Harabagiu V; Coseri S
    Carbohydr Polym; 2013 Jan; 91(2):502-7. PubMed ID: 23121938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TEMPO-mediated oxidation of cellulose III.
    da Silva Perez D; Montanari S; Vignon MR
    Biomacromolecules; 2003; 4(5):1417-25. PubMed ID: 12959614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical properties of cellulose selectively oxidized with the 2,2,6,6-tetramethyl-1-piperidinyl oxoammonium ion.
    Suh DS; Lee KS; Chang PS; Kim KO
    J Food Sci; 2007 Jun; 72(5):C235-42. PubMed ID: 17995708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional cellulose beads and their interaction with gram positive bacteria.
    Blachechen LS; Fardim P; Petri DF
    Biomacromolecules; 2014 Sep; 15(9):3440-8. PubMed ID: 25100636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers.
    Ciolacu D; Kovac J; Kokol V
    Carbohydr Res; 2010 Mar; 345(5):621-30. PubMed ID: 20122684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Oxidation of dermatan sulfate with a NaOCl-NaBr-2,2,6,6-tetramethylpiperidine-1-oxyl reagent in the water medium].
    Ponedel'kina IIu; Khaĭbrakhmanova EA; Odinokov VN; Khalilov LM; Dzhemilev UM
    Bioorg Khim; 2010; 36(3):387-91. PubMed ID: 20644593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic study of the electron-transfer reaction of the phthalimide-N-oxyl radical (PINO) with ferrocenes.
    Baciocchi E; Bietti M; Di Fusco M; Lanzalunga O
    J Org Chem; 2007 Nov; 72(23):8748-54. PubMed ID: 17949039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing Quaternary Carbons from N-(Acyloxy)phthalimide Precursors of Tertiary Radicals Using Visible-Light Photocatalysis.
    Pratsch G; Lackner GL; Overman LE
    J Org Chem; 2015 Jun; 80(12):6025-36. PubMed ID: 26030520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on TEMPO-Mediated Oxidation of
    Li A; Xue Q; Ye Y; Gong P; Deng M; Jiang B
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition between organics and bromide at the aqueous solution-air interface as seen from ozone uptake kinetics and X-ray photoelectron spectroscopy.
    Lee MT; Brown MA; Kato S; Kleibert A; Türler A; Ammann M
    J Phys Chem A; 2015 May; 119(19):4600-8. PubMed ID: 25530167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes.
    Kljun A; Benians TA; Goubet F; Meulewaeter F; Knox JP; Blackburn RS
    Biomacromolecules; 2011 Nov; 12(11):4121-6. PubMed ID: 21981266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods.
    Zhang K; Sun P; Liu H; Shang S; Song J; Wang D
    Carbohydr Polym; 2016 Mar; 138():237-43. PubMed ID: 26794758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green process for chemical functionalization of nanocellulose with carboxylic acids.
    Espino-Pérez E; Domenek S; Belgacem N; Sillard C; Bras J
    Biomacromolecules; 2014 Dec; 15(12):4551-60. PubMed ID: 25353612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, optical properties, stability, and encapsulation of Cu-nanoparticles.
    Bashir O; Hussain S; AL-Thabaiti SA; Khan Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():265-73. PubMed ID: 25615680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.
    Cao X; Wang X; Ding B; Yu J; Sun G
    Carbohydr Polym; 2013 Feb; 92(2):2041-7. PubMed ID: 23399256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers.
    Cao X; Ding B; Yu J; Al-Deyab SS
    Carbohydr Polym; 2012 Oct; 90(2):1075-80. PubMed ID: 22840042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mn2+ complexes with 12-membered pyridine based macrocycles bearing carboxylate or phosphonate pendant arm: crystallographic, thermodynamic, kinetic, redox, and 1H/17O relaxation studies.
    Drahoš B; Kotek J; Císařová I; Hermann P; Helm L; Lukeš I; Tóth É
    Inorg Chem; 2011 Dec; 50(24):12785-801. PubMed ID: 22092039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.