These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22944446)

  • 1. Theoretical study on the mechanisms of cellulose dissolution and precipitation in the phosphoric acid-acetone process.
    Kang P; Qin W; Zheng ZM; Dong CQ; Yang YP
    Carbohydr Polym; 2012 Nov; 90(4):1771-8. PubMed ID: 22944446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution mechanism of crystalline cellulose in H3PO4 as assessed by high-field NMR spectroscopy and fast field cycling NMR relaxometry.
    Conte P; Maccotta A; De Pasquale C; Bubici S; Alonzo G
    J Agric Food Chem; 2009 Oct; 57(19):8748-52. PubMed ID: 19769370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin hydrolysis and phosphorylation mechanism during phosphoric acid-acetone pretreatment: a DFT study.
    Qin W; Wu L; Zheng Z; Dong C; Yang Y
    Molecules; 2014 Dec; 19(12):21335-49. PubMed ID: 25529020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings.
    Sathitsuksanoh N; Zhu Z; Ho TJ; Bai MD; Zhang YH
    Bioresour Technol; 2010 Jul; 101(13):4926-9. PubMed ID: 19854047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-driven preferential association of lignin with regions of crystalline cellulose in molecular dynamics simulation.
    Lindner B; Petridis L; Schulz R; Smith JC
    Biomacromolecules; 2013 Oct; 14(10):3390-8. PubMed ID: 23980921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure.
    Zhang YH; Cui J; Lynd LR; Kuang LR
    Biomacromolecules; 2006 Feb; 7(2):644-8. PubMed ID: 16471942
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of solvent exchange on the supramolecular structure, the molecular mobility and the dissolution behavior of cellulose in LiCl/DMAc.
    Ishii D; Tatsumi D; Matsumoto T
    Carbohydr Res; 2008 Apr; 343(5):919-28. PubMed ID: 18299125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry.
    Charlier L; Mazeau K
    J Phys Chem B; 2012 Apr; 116(14):4163-74. PubMed ID: 22429051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MP2, density functional theory, and molecular mechanical calculations of C-H...pi and hydrogen bond interactions in a cellulose-binding module-cellulose model system.
    Mohamed MN; Watts HD; Guo J; Catchmark JM; Kubicki JD
    Carbohydr Res; 2010 Aug; 345(12):1741-51. PubMed ID: 20580346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling interactions between lignocellulose and ionic liquids using DFT-D.
    Janesko BG
    Phys Chem Chem Phys; 2011 Jun; 13(23):11393-401. PubMed ID: 21455515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractionating recalcitrant lignocellulose at modest reaction conditions.
    Zhang YH; Ding SY; Mielenz JR; Cui JB; Elander RT; Laser M; Himmel ME; McMillan JR; Lynd LR
    Biotechnol Bioeng; 2007 Jun; 97(2):214-23. PubMed ID: 17318910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study.
    Liu H; Sale KL; Holmes BM; Simmons BA; Singh S
    J Phys Chem B; 2010 Apr; 114(12):4293-301. PubMed ID: 20218725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides.
    Meine N; Rinaldi R; Schüth F
    ChemSusChem; 2012 Aug; 5(8):1449-54. PubMed ID: 22488972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis.
    Moxley G; Zhu Z; Zhang YH
    J Agric Food Chem; 2008 Sep; 56(17):7885-90. PubMed ID: 18702466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetone-based cellulose solvent.
    Kostag M; Liebert T; Heinze T
    Macromol Rapid Commun; 2014 Aug; 35(16):1419-22. PubMed ID: 24925764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases.
    Geddes CC; Peterson JJ; Roslander C; Zacchi G; Mullinnix MT; Shanmugam KT; Ingram LO
    Bioresour Technol; 2010 Mar; 101(6):1851-7. PubMed ID: 19880314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis.
    Camarero Espinosa S; Kuhnt T; Foster EJ; Weder C
    Biomacromolecules; 2013 Apr; 14(4):1223-30. PubMed ID: 23458473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into hydrogen bonding and stacking interactions in cellulose.
    Parthasarathi R; Bellesia G; Chundawat SP; Dale BE; Langan P; Gnanakaran S
    J Phys Chem A; 2011 Dec; 115(49):14191-202. PubMed ID: 22023599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of acid-catalysed organosolv fractionation of wheat straw.
    Sidiras D; Koukios E
    Bioresour Technol; 2004 Aug; 94(1):91-8. PubMed ID: 15081492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.