BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22944532)

  • 41. Current and future targeted alpha particle therapies for osteosarcoma: Radium-223, actinium-225, and thorium-227.
    Anderson PM; Subbiah V; Trucco MM
    Front Med (Lausanne); 2022; 9():1030094. PubMed ID: 36457575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental studies on the proton-induced activation reactions of molybdenum in the energy range 22-67 MeV.
    Uddin MS; Hagiwara M; Tarkanyi F; Ditroi F; Baba M
    Appl Radiat Isot; 2004 Jun; 60(6):911-20. PubMed ID: 15110357
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimation of the production of medical Ac-225 on thorium material via proton accelerator.
    Artun O
    Appl Radiat Isot; 2017 Sep; 127():166-172. PubMed ID: 28628886
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Excitation functions of proton-induced reactions in (nat)Cu in the energy range 7-17 MeV.
    Siiskonen T; Huikari J; Haavisto T; Bergman J; Heselius SJ; Lill JO; Lönnroth T; Peräjärvi K
    Appl Radiat Isot; 2009 Nov; 67(11):2037-9. PubMed ID: 19110436
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides.
    Henriksen G; Schoultz BW; Michaelsen TE; Bruland ØS; Larsen RH
    Nucl Med Biol; 2004 May; 31(4):441-9. PubMed ID: 15093814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Production of
    Friend MT; Mastren T; Parker TG; Vermeulen CE; Brugh M; Birnbaum ER; Nortier FM; Fassbender ME
    Appl Radiat Isot; 2020 Feb; 156():108973. PubMed ID: 31727509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Measurement of the 226Th and 222Ra half-lives.
    Pommé S; Suliman G; Marouli M; Van Ammel R; Jobbágy V; Paepen J; Stroh H; Apostolidis C; Abbas K; Morgenstern A
    Appl Radiat Isot; 2012 Sep; 70(9):1913-8. PubMed ID: 22445397
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin.
    Nour S; El-Sharkawy A; Burnett WC; Horwitz EP
    Appl Radiat Isot; 2004 Dec; 61(6):1173-8. PubMed ID: 15388106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental determination of proton-induced cross-sections on natural zirconium.
    Khandaker MU; Kim K; Lee MW; Kim KS; Kim GN; Cho YS; Lee YO
    Appl Radiat Isot; 2009; 67(7-8):1341-7. PubMed ID: 19282193
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT.
    Kobayashi T; Bengua G; Tanaka K; Nakagawa Y
    Phys Med Biol; 2007 Feb; 52(3):645-58. PubMed ID: 17228111
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Measuring the radium quartet (228Ra, 226Ra, 224Ra, 223Ra) in seawater samples using gamma spectrometry.
    van Beek P; Souhaut M; Reyss JL
    J Environ Radioact; 2010 Jul; 101(7):521-9. PubMed ID: 20106569
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Separation of 103Ru from a proton irradiated thorium matrix: A potential source of Auger therapy radionuclide 103mRh.
    Mastren T; Radchenko V; Hopkins PD; Engle JW; Weidner JW; Copping R; Brugh M; Nortier FM; Birnbaum ER; John KD; Fassbender ME
    PLoS One; 2017; 12(12):e0190308. PubMed ID: 29272318
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation of production of the therapeutic radioisotope 165 Er by proton induced reactions on erbium in comparison with other production routes.
    Tárkányi F; Takács S; Hermanne A; Ditrói F; Király B; Baba M; Ohtsuki T; Kovalev SF; Ignatyuk AV
    Appl Radiat Isot; 2009 Feb; 67(2):243-7. PubMed ID: 19059787
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measurement of the 225Ac half-life.
    Pommé S; Marouli M; Suliman G; Dikmen H; Van Ammel R; Jobbágy V; Dirican A; Stroh H; Paepen J; Bruchertseifer F; Apostolidis C; Morgenstern A
    Appl Radiat Isot; 2012 Nov; 70(11):2608-14. PubMed ID: 22940415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical predictions for ionization cross sections of DNA nucleobases impacted by light ions.
    Champion C; Lekadir H; Galassi ME; Fojón O; Rivarola RD; Hanssen J
    Phys Med Biol; 2010 Oct; 55(20):6053-67. PubMed ID: 20858921
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of
    Robertson AKH; Ramogida CF; Schaffer P; Radchenko V
    Curr Radiopharm; 2018; 11(3):156-172. PubMed ID: 29658444
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Yield and purity of 82Sr produced via the natRb(p,xn) 82Sr process.
    Qaim SM; Steyn GF; Spahn I; Spellerberg S; van der Walt TN; Coenen HH
    Appl Radiat Isot; 2007 Feb; 65(2):247-52. PubMed ID: 17023163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Actinide sulfides in the gas phase: experimental and theoretical studies of the thermochemistry of AnS (An = Ac, Th, Pa, U, Np, Pu, Am and Cm).
    Pereira CC; Marsden CJ; Marçalo J; Gibson JK
    Phys Chem Chem Phys; 2011 Jul; 13(28):12940-58. PubMed ID: 21687883
    [TBL] [Abstract][Full Text] [Related]  

  • 59. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides.
    Woodward J; Kennel SJ; Stuckey A; Osborne D; Wall J; Rondinone AJ; Standaert RF; Mirzadeh S
    Bioconjug Chem; 2011 Apr; 22(4):766-76. PubMed ID: 21434681
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proton-induced cross-sections of nuclear reactions on lead up to 37 MeV.
    Ditrói F; Tárkányi F; Takács S; Hermanne A
    Appl Radiat Isot; 2014 Aug; 90():208-17. PubMed ID: 24801605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.